THE EXISTENCE AND ASYMPTOTIC STABILITY OF PERIODIC SOLUTIONS WITH AN INTERIOR LAYER OF BURGERS TYPE EQUATIONS WITH MODULAR ADVECTION

被引:13
作者
Nefedov, Nikolay [1 ]
机构
[1] Lomonosov Moscow State Univ, Fac Phys, Dept Math, Moscow 19899, Russia
基金
俄罗斯科学基金会;
关键词
Singularly perturbed parabolic periodic problems; Burgers type equations; exponential asymptotic stability; lower and upper solutions;
D O I
10.1051/mmnp/2019009
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider a new class of singularly perturbed parabolic periodic boundary value problems for reaction-advection-diffusion equations: Burgers type equations with modular advection. We construct the interior layer type formal asymptotics and propose a modified procedure to get asymptotic lower and upper solutions. By using sufficiently precise lower and upper solutions, we prove the existence of a periodic solution with an interior layer and estimate the accuracy of its asymptotics. The asymptotic stability of this solution is also established.
引用
收藏
页数:14
相关论文
共 23 条
[1]  
Ambartsumyan SA., 1986, Elasticity Theory of Different Moduli
[2]  
[Anonymous], DIFF URAVN
[3]  
Bateman H., 1915, MON WEA REV, V43, P163
[4]  
Burgers J. M., 1948, Adv. Appl. Mech, V1, P171, DOI [10.1016/S0065-2156(08)70100-5, DOI 10.1016/S0065-2156(08)70100-5]
[5]   ON A QUASI-LINEAR PARABOLIC EQUATION OCCURRING IN AERODYNAMICS [J].
COLE, JD .
QUARTERLY OF APPLIED MATHEMATICS, 1951, 9 (03) :225-236
[6]   On the exact and numerical solution of the time-delayed Burgers equation [J].
Fahmy, E. S. ;
Raslan, K. R. ;
Abdusalam, H. A. .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2008, 85 (11) :1637-1648
[7]  
Hedberg C.M., 2011, NONLINEAR ACOUSTICS
[8]   Collisions, mutual losses and annihilation of pulses in a modular nonlinear medium [J].
Hedberg, Claes M. ;
Rudenko, Oleg V. .
NONLINEAR DYNAMICS, 2017, 90 (03) :2083-2091
[9]  
Hess P., 1991, Pitman Res. Notes Math. Ser., V247
[10]  
Levashova N.T., 2018, MATH METHOD APPL SCI, P1