On the discrepancy of point distributions on spheres and hyperbolic spaces

被引:2
作者
Magyar, A [1 ]
机构
[1] Univ Georgia, Dept Math, Athens, GA 30602 USA
来源
MONATSHEFTE FUR MATHEMATIK | 2002年 / 136卷 / 04期
关键词
discrepancy; spherical caps; hyperbolic spaces;
D O I
10.1007/s00605-002-0480-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Optimal lower bounds are given for the discrepancy of point distributions w.r.t. geodesic balls on spheres and hyperbolic spaces. The mean discrepancy is estimated below by using a non-commutative version of the Fourier transform method developed by Beck for Euclidean spaces.
引用
收藏
页码:287 / 296
页数:10
相关论文
共 7 条
[1]   SOME UPPER-BOUNDS IN THE THEORY OF IRREGULARITIES OF DISTRIBUTION [J].
BECK, J .
ACTA ARITHMETICA, 1984, 43 (02) :115-130
[2]  
Beck J., 1987, Cambridge Tracts in Mathematics, V89
[3]   SLICE DISCREPANCY AND IRREGULARITIES OF DISTRIBUTION ON SPHERES [J].
BLUMLINGER, M .
MATHEMATIKA, 1991, 38 (75) :105-116
[4]  
DRMOTA M, 1990, LECT NOTES MATH, V1452, P31
[5]  
Helgason S., 1984, GROUPS GEOMETRIC ANA
[6]   IRREGULARITIES OF DISTRIBUTION .4. [J].
SCHMIDT, WM .
INVENTIONES MATHEMATICAE, 1969, 7 (01) :55-&
[7]  
Szego G., 1967, ORTHOGONAL POLYNOMIA, V3rd