On the solutions of a quadratic integral and an integral-differential equation

被引:0
作者
von Wolfersdorf, L [1 ]
机构
[1] TU Bergakad, Fak Math & Informat, D-09596 Freiberg, Germany
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2002年 / 21卷 / 02期
关键词
nonlinear integral equations; nonlinear integro-ordinary differential equations; boundary value problems for holomorphic functions;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An integral equation and a related integral-differential equation of first order over R+ with a quadratic integral term representing the so-called autocorrelation of the unknown function is dealt with. For both equations the general solution is constructed and estimated in the L-2-norm. Further, the asymptotic behaviour and the stability of the solution are investigated.
引用
收藏
页码:381 / 398
页数:18
相关论文
共 50 条
[31]   Optimal control of nonlinear Fredholm integral equations [J].
Roubicek, T .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 97 (03) :707-729
[32]   THE SOLVABILITY OF SOME NONLINEAR FUNCTIONAL INTEGRAL EQUATIONS [J].
Ozdemir, Ismet ;
Cakan, Umit .
STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2016, 53 (01) :7-21
[33]   Optimal Control of Nonlinear Fredholm Integral Equations [J].
T. Roubíček .
Journal of Optimization Theory and Applications, 1998, 97 :707-729
[34]   On integral equations of Urysohn-Volterra type [J].
Darwish, MA .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 136 (01) :93-98
[35]   Solution of Nonlinear Integral Equation via Fixed Point of Cyclic αLψ-Rational Contraction Mappings in Metric-Like Spaces [J].
Hammad, Hasanen Abuelmagd ;
De la Sen, Manuel .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2020, 51 (01) :81-105
[36]   NONLINEAR CONVOLUTION TYPE INTEGRAL EQUATIONS IN COMPLEX SPACES [J].
Askhabov, S. N. .
UFA MATHEMATICAL JOURNAL, 2021, 13 (01) :17-30
[37]   New approach for numerical solution of Hammerstein integral equations [J].
Rashidinia, J. ;
Zarebnia, M. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 185 (01) :147-154
[38]   Weak ψ-Contractions on Directed Graphs with Applications to Integral Equations [J].
Filali, Doaa ;
Dilshad, Mohammad ;
Akram, Mohammad .
MATHEMATICS, 2024, 12 (17)
[39]   Improved polynomial approximations for the solution of nonlinear integral equations [J].
Darijani, A. ;
Mohseni-Moghadam, M. .
SCIENTIA IRANICA, 2013, 20 (03) :765-770
[40]   A Wavelet Method for the Solution of Nonlinear Integral Equations with Singular Kernels [J].
Wang, Jizeng ;
Zhang, Lei ;
Zhou, Youhe .
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2014, 102 (02) :127-148