On the nonexistence of iterative roots

被引:21
作者
Bogatyi, S [1 ]
机构
[1] MOSCOW MV LOMONOSOV STATE UNIV,MECH & MATH FAC,MOSCOW 119899,RUSSIA
关键词
iterative root; topological conjugation; index of fixed point; multiplicity of zero;
D O I
10.1016/S0166-8641(96)00107-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the germ of a holomorphic mapping F:(U,0)-->(C,0) of the form F(z)=qz+...., where q is a primitive root of unity of order d greater than or equal to 2, criteria for the existence of a continuous iterative root of given order and the topological linearizability of F are given. The following conditions are equivalent: (1) F-d = Id; (2) the germ of the mapping F(z) is topologically conjugate to the germ of the mapping qz; (3) the germ of the mapping F has a continuous iterative root of order d(k) for every k greater than or equal to 1. If F-d not equal Id, then for a given positive integer N the germ of the mapping F has a continuous iterative root of order N iff d . gcd(N,ind(F-d,0)-1) divides ind(F-d,0)-1. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:97 / 123
页数:27
相关论文
共 131 条
[1]  
[Anonymous], 1964, J AUSTR MATH SOC, DOI 10.1017/S144678870002334X
[2]  
[Anonymous], 1975, GEOMETRICAL METHODS
[3]  
[Anonymous], LECT NOTES MATH
[4]  
[Anonymous], J AUST MATH SOC, DOI 10.1017/S1446788700023338
[5]  
[Anonymous], 1958, MATH Z, DOI 10.1007/BF01187396
[6]  
[Anonymous], 1963, T AM MATH SOC, DOI [10.1090/S0002-9947-1963-0155971-X, DOI 10.1090/S0002-9947-1963-0155971-X]
[7]  
Arnold V. I., 1978, COMPLEMENTARY CHAPTE
[8]  
BAJAKTAREVIC M, 1965, PUBL I MATH BEOGRAD, V5, P115
[9]  
BAJAKTAREVIC M, 1965, PUBL I MATH BEOGRAD, V5, P125
[10]  
Baker I.N., 1960, MATH Z, V73, P280