Gradient estimation on Navier-Stokes equations

被引:82
作者
Tian, G [1 ]
Xin, ZP
机构
[1] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[3] Chinese Univ Hong Kong, Inst Math Sci, Shatin, NT, Peoples R China
关键词
D O I
10.4310/CAG.1999.v7.n2.a1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we present a prior uniform gradient estimates on solutions to the S-dimensional Navier-Stokes equations. It is shown that the gradient of the velocity field is locally uniformly bounded in L-infinity-norm provided that either the scaled local L-2-norm of the vorticity or the scaled local total energy is small. In particular, our results imply that the smooth solutions to 3-dimensional Navier-Stokes equations cannot develop finite time singularity and suitable weak solutions are in fact regular if either the scaled local L-2-norm of the vorticity or the scaled local energy is small.
引用
收藏
页码:221 / 257
页数:37
相关论文
共 15 条
[1]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[2]   ON THE EXISTENCE OF CERTAIN SINGULAR INTEGRALS [J].
CALDERON, AP ;
ZYGMUND, A .
ACTA MATHEMATICA, 1952, 88 (03) :85-139
[3]   EXISTENCE OF REGULAR SOLUTIONS TO THE STATIONARY NAVIER-STOKES EQUATIONS [J].
FREHSE, J ;
RUZICKA, M .
MATHEMATISCHE ANNALEN, 1995, 302 (04) :699-717
[4]  
Frehse J., 1994, ANN SC NORM SUPER S, V21, P63
[5]  
Hopf E., 1950, MATH NACHR, V4, P213, DOI DOI 10.1002/MANA.3210040121
[6]  
Ladyzhenskaya O. A., 1969, MATH THEORY VISCOUS
[7]   On the movement of a viscous fluid to fill the space [J].
Leray, J .
ACTA MATHEMATICA, 1934, 63 (01) :193-248
[8]  
Lin F.-H., 1996, DISCRETE CONTINUOUS, V2, P1, DOI DOI 10.3934/dcds.1996.2.1
[9]  
Morrey C.B. Jr., 1966, Multiple Integrals in the Calculus of Variations, V130
[10]  
NECAS J, 1995, SELF SIMILAR SOLUTIO