ON THE WEIGHTED FRACTIONAL OPERATORS OF A FUNCTION WITH RESPECT TO ANOTHER FUNCTION

被引:85
作者
Jarad, F. [1 ]
Abdeljawad, T. [2 ,3 ,4 ]
Shah, K. [5 ]
机构
[1] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey
[2] Prince Sultan Univ, Dept Math & Gen Sci, POB 66833, Riyadh 11586, Saudi Arabia
[3] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[4] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
[5] Univ Malakand, Dept Math, Khyber Pakhtunkhwa, Pakistan
关键词
Weighted Fractional Integrals; Weighted Spaces of Summable Functions; Weighted Spaces of Absolute Continuous Functions; Weighted Generalized Laplace Transform; DERIVATIVES;
D O I
10.1142/S0218348X20400113
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The primary goal of this study is to define the weighted fractional operators on some spaces. We first prove that the weighted integrals are bounded in certain spaces. Afterwards, we discuss the weighted fractional derivatives defined on absolute continuous-like spaces. At the end, we present a modified Laplace transform that can be applied perfectly to such operators.
引用
收藏
页数:12
相关论文
共 20 条
[1]   Some generalized fractional calculus operators and their applications in integral equations [J].
Agrawal, Om P. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (04) :700-711
[2]   Generalized Multiparameters Fractional Variational Calculus [J].
Agrawal, Om Prakash .
INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 2012
[3]   On weighted Atangana-Baleanu fractional operators [J].
Al-Refai, Mohammed .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[4]   Fundamental results on weighted Caputo-Fabrizio fractional derivative [J].
Al-Refai, Mohammed ;
Jarrah, Abdulla M. .
CHAOS SOLITONS & FRACTALS, 2019, 126 :7-11
[5]   NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model [J].
Atangana, Abdon ;
Baleanu, Dumitru .
THERMAL SCIENCE, 2016, 20 (02) :763-769
[6]  
Baleanu D, 2018, ADV DIFFER EQU-NY, V2018, P142
[7]  
Caputo M., 2015, PROG FRACT DIFFER AP, V1, P73, DOI DOI 10.12785/PFDA/010201
[8]  
Debnath L., 2003, Int. J. Math. Math. Sci., V2003, P3413, DOI [10.1155/S0161171203301486, DOI 10.1155/S0161171203301486]
[9]  
Hilfer R, 2000, APPL FRACTIONAL CALC
[10]   GENERALIZED FRACTIONAL DERIVATIVES AND LAPLACE TRANSFORM [J].
Jarad, Fahd ;
Abdeljawad, Thabet .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (03) :709-722