Derived invariants of irregular varieties and Hochschild homology

被引:4
|
作者
Lombardi, Luigi [1 ]
机构
[1] Univ Bonn, Math Inst, D-53115 Bonn, Germany
关键词
equivalences of derived categories; support loci; Hochschild homology; Hodge numbers; Picard variety; Rouquier isomorphism; HIGHER DIRECT IMAGES; ALGEBRAIC-VARIETIES; BIRATIONAL GEOMETRY; CLASSIFICATION; MANIFOLDS; SHEAVES;
D O I
10.2140/ant.2014.8.513
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the behavior of cohomological support loci of the canonical bundle under derived equivalence of smooth projective varieties. This is achieved by investigating the derived invariance of a generalized version of Hochschild homology. Furthermore, using techniques coming from birational geometry, we establish the derived invariance of the Albanese dimension for varieties having nonnegative Kodaira dimension. We apply our machinery to study the derived invariance of the holomorphic Euler characteristic and of certain Hodge numbers for special classes of varieties. Further applications concern the behavior of particular types of fibrations under derived equivalence.
引用
收藏
页码:513 / 542
页数:30
相关论文
共 50 条
  • [41] Triply-graded link homology and Hochschild homology of Soergel bimodules
    Khovanov, Mikhail
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2007, 18 (08) : 869 - 885
  • [42] Hochschild cohomology and homology of quantum complete intersections
    Oppermann, Steffen
    ALGEBRA & NUMBER THEORY, 2010, 4 (07) : 821 - 838
  • [43] Hochschild homology, lax codescent, and duplicial structure
    Garner, Richard
    Lack, Stephen
    Slevin, Paul
    ANNALS OF K-THEORY, 2018, 3 (01) : 1 - 31
  • [44] Hochschild homology and cohomology of generalized Weyl algebras
    Farinati, MA
    Solotar, A
    Suárez-Alvarez, M
    ANNALES DE L INSTITUT FOURIER, 2003, 53 (02) : 465 - +
  • [45] A geometric model for Hochschild homology of Soergel bimodules
    Webster, Ben
    Williamson, Geordie
    GEOMETRY & TOPOLOGY, 2008, 12 : 1243 - 1263
  • [46] Hochschild and cyclic homology of finite type algebras
    Kazhdan D.
    Nistor V.
    Schneider P.
    Selecta Mathematica, 1998, 4 (2) : 321 - 359
  • [47] Hochschild (Co)homology of a class of Nakayama algebras
    Yun Ge Xu
    Dan Wang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (07) : 1097 - 1106
  • [48] Hochschild (Co)homology of a class of Nakayama algebras
    Yun Ge Xu
    Dan Wang
    Acta Mathematica Sinica, English Series, 2008, 24 : 1097 - 1106
  • [49] A Hochschild homology Euler characteristic for circle actions
    Geoghegan, R
    Nicas, A
    K-THEORY, 1999, 18 (02): : 99 - 135
  • [50] Hochschild (Co)homology of Hopf crossed products
    Guccione, JA
    Guccione, JJ
    K-THEORY, 2002, 25 (02): : 139 - 169