Derived invariants of irregular varieties and Hochschild homology

被引:4
|
作者
Lombardi, Luigi [1 ]
机构
[1] Univ Bonn, Math Inst, D-53115 Bonn, Germany
关键词
equivalences of derived categories; support loci; Hochschild homology; Hodge numbers; Picard variety; Rouquier isomorphism; HIGHER DIRECT IMAGES; ALGEBRAIC-VARIETIES; BIRATIONAL GEOMETRY; CLASSIFICATION; MANIFOLDS; SHEAVES;
D O I
10.2140/ant.2014.8.513
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the behavior of cohomological support loci of the canonical bundle under derived equivalence of smooth projective varieties. This is achieved by investigating the derived invariance of a generalized version of Hochschild homology. Furthermore, using techniques coming from birational geometry, we establish the derived invariance of the Albanese dimension for varieties having nonnegative Kodaira dimension. We apply our machinery to study the derived invariance of the holomorphic Euler characteristic and of certain Hodge numbers for special classes of varieties. Further applications concern the behavior of particular types of fibrations under derived equivalence.
引用
收藏
页码:513 / 542
页数:30
相关论文
共 50 条
  • [1] Derived invariants from topological Hochschild homology
    Antieau, Benjamin
    Bragg, Daniel
    ALGEBRAIC GEOMETRY, 2022, 9 (03): : 364 - 399
  • [2] Hochschild (Co)homology and Derived Categories
    Bernhard Keller
    Bulletin of the Iranian Mathematical Society, 2021, 47 : 57 - 83
  • [4] Symplectic homology as Hochschild homology
    Seidel, Paul
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS: ALGEBRAIC GEOMETRY SEATTLE 2005, VOL 80, PTS 1 AND 2, 2009, 80 : 415 - 434
  • [5] THE HOMOLOGY OF DIGRAPHS AS A GENERALIZATION OF HOCHSCHILD HOMOLOGY
    Turner, Paul
    Wagner, Emmanuel
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2012, 11 (02)
  • [6] Leibniz and Hochschild homology
    Altawallbeh, Zuhier
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (01) : 62 - 68
  • [7] Hochschild and cyclic homology via functor homology
    Pirashvili, T
    Richter, B
    K-THEORY, 2002, 25 (01): : 39 - 49
  • [8] Hochschild homology and split pairs
    Bergh, Petter Andreas
    Madsen, Dag
    BULLETIN DES SCIENCES MATHEMATIQUES, 2010, 134 (07): : 665 - 676
  • [9] Real topological Hochschild homology
    Dotto, Emanuele
    Moi, Kristian
    Patchkoria, Irakli
    Reeh, Sune Precht
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2021, 23 (01) : 63 - 152
  • [10] HOCHSCHILD HOMOLOGY AND TRUNCATED CYCLES
    Bergh, Petter Andreas
    Han, Yang
    Madsen, Dag
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (04) : 1133 - 1139