Prediction of enhancer-promoter interactions using the cross-cell type information and domain adversarial neural network

被引:22
作者
Jing, Fang [1 ]
Zhang, Shao-Wu [1 ]
Zhang, Shihua [2 ,3 ,4 ]
机构
[1] Northwestern Polytech Univ, Key Lab Informat Fus Technol, Minist Educ, Sch Automat, 127 West Youyi Rd, Xian 710072, Shaanxi, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, RCSDS, NCMIS,CEMS, 55 Zhongguancun East Rd, Beijing 10090, Peoples R China
[3] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Ctr Excellence Anim Evolut & Genet, Kunming 650223, Yunnan, Peoples R China
关键词
Enhancer– promoter interactions; Cell line; Convolutional neural network; Transfer learning; Gradient reversal layer; LONG NONCODING RNAS; HUMAN GENOME; PRINCIPLES; ALIGNMENT; SEQUENCE; PROTEIN;
D O I
10.1186/s12859-020-03844-4
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background Enhancer-promoter interactions (EPIs) play key roles in transcriptional regulation and disease progression. Although several computational methods have been developed to predict such interactions, their performances are not satisfactory when training and testing data from different cell lines. Currently, it is still unclear what extent a across cell line prediction can be made based on sequence-level information. Results In this work, we present a novel Sequence-based method (called SEPT) to predict the enhancer-promoter interactions in new cell line by using the cross-cell information and Transfer learning. SEPT first learns the features of enhancer and promoter from DNA sequences with convolutional neural network (CNN), then designing the gradient reversal layer of transfer learning to reduce the cell line specific features meanwhile retaining the features associated with EPIs. When the locations of enhancers and promoters are provided in new cell line, SEPT can successfully recognize EPIs in this new cell line based on labeled data of other cell lines. The experiment results show that SEPT can effectively learn the latent import EPIs-related features between cell lines and achieves the best prediction performance in terms of AUC (the area under the receiver operating curves). Conclusions SEPT is an effective method for predicting the EPIs in new cell line. Domain adversarial architecture of transfer learning used in SEPT can learn the latent EPIs shared features among cell lines from all other existing labeled data. It can be expected that SEPT will be of interest to researchers concerned with biological interaction prediction.
引用
收藏
页数:16
相关论文
共 53 条
[1]   Domain Adversarial for Acoustic Emotion Recognition [J].
Abdelwahab, Mohammed ;
Busso, Carlos .
IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2018, 26 (12) :2423-2435
[2]   Disruption of the 3D cancer genome blueprint [J].
Achinger-Kawecka, Joanna ;
Clark, Susan J. .
EPIGENOMICS, 2017, 9 (01) :47-55
[3]   An atlas of active enhancers across human cell types and tissues [J].
Andersson, Robin ;
Gebhard, Claudia ;
Miguel-Escalada, Irene ;
Hoof, Ilka ;
Bornholdt, Jette ;
Boyd, Mette ;
Chen, Yun ;
Zhao, Xiaobei ;
Schmidl, Christian ;
Suzuki, Takahiro ;
Ntini, Evgenia ;
Arner, Erik ;
Valen, Eivind ;
Li, Kang ;
Schwarzfischer, Lucia ;
Glatz, Dagmar ;
Raithel, Johanna ;
Lilje, Berit ;
Rapin, Nicolas ;
Bagger, Frederik Otzen ;
Jorgensen, Mette ;
Andersen, Peter Refsing ;
Bertin, Nicolas ;
Rackham, Owen ;
Burroughs, A. Maxwell ;
Baillie, J. Kenneth ;
Ishizu, Yuri ;
Shimizu, Yuri ;
Furuhata, Erina ;
Maeda, Shiori ;
Negishi, Yutaka ;
Mungall, Christopher J. ;
Meehan, Terrence F. ;
Lassmann, Timo ;
Itoh, Masayoshi ;
Kawaji, Hideya ;
Kondo, Naoto ;
Kawai, Jun ;
Lennartsson, Andreas ;
Daub, Carsten O. ;
Heutink, Peter ;
Hume, David A. ;
Jensen, Torben Heick ;
Suzuki, Harukazu ;
Hayashizaki, Yoshihide ;
Mueller, Ferenc ;
Forrest, Alistair R. R. ;
Carninci, Piero ;
Rehli, Michael ;
Sandelin, Albin .
NATURE, 2014, 507 (7493) :455-+
[4]  
[Anonymous], 2015, TENSOR
[5]   Cardiac malformations, adrenal agenesis, neural crest defects and exencephaly in mice lacking Cited2, a new Tfap2 co-activator [J].
Bamforth, SD ;
Bragança, J ;
Eloranta, JJ ;
Murdoch, JN ;
Marques, FIR ;
Kranc, KR ;
Farza, H ;
Henderson, DJ ;
Hurst, HC ;
Bhattacharya, S .
NATURE GENETICS, 2001, 29 (04) :469-474
[6]  
Beyer CA, 1992, BONE JOINT J, V73, P977
[7]   Genome Architecture: Domain Organization of Interphase Chromosomes [J].
Bickmore, Wendy A. ;
van Steensel, Bas .
CELL, 2013, 152 (06) :1270-1284
[8]   Transcriptional repression of MMP-1 by p21SNFT and reduced in vitro invasiveness of hepatocarcinoma cells [J].
Bower, KE ;
Fritz, JM ;
McGuire, KL .
ONCOGENE, 2004, 23 (54) :8805-8814
[9]   Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs [J].
Bowman, Christopher John ;
Ayer, Donald E. ;
Dynlacht, Brian David .
NATURE CELL BIOLOGY, 2014, 16 (12) :1202-U173
[10]   Reconstruction of enhancer-target networks in 935 samples of human primary cells, tissues and cell lines [J].
Cao, Qin ;
Anyansi, Christine ;
Hu, Xihao ;
Xu, Liangliang ;
Xiong, Lei ;
Tang, Wenshu ;
Mok, Myth T. S. ;
Cheng, Chao ;
Fan, Xiaodan ;
Gerstein, Mark ;
Cheng, Alfred S. L. ;
Yip, Kevin Y. .
NATURE GENETICS, 2017, 49 (10) :1428-+