Lactobacillus-derived metabolites enhance the antitumor activity of 5-FU and inhibit metastatic behavior in 5-FU-resistant colorectal cancer cells by regulating claudin-1 expression

被引:24
作者
An, JaeJin [1 ]
Ha, Eun-Mi [2 ]
机构
[1] Med Convergence Mat Commercializat Ctr, Gyongsan 38408, South Korea
[2] Catholic Univ Daegu, Dept Pharmacol, Coll Pharm, Gyongsan 38430, South Korea
基金
新加坡国家研究基金会;
关键词
colorectal cancer; HCT-116; 5-FU; chemoresistant; Lactobacillus; metastasis; tight junction; CLDN-1; combination therapy; TIGHT JUNCTION PROTEINS; EPITHELIAL-MESENCHYMAL TRANSITION; INTESTINAL MICROBIOTA; BARRIER FUNCTION; GUT MICROBIOTA; HUMAN COLON; PLANTARUM; 5-FLUOROURACIL; FLUOROURACIL; MODULATION;
D O I
10.1007/s12275-020-0375-y
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Lactobacillus plantarum-derived metabolites (LDMs) increase drug sensitivity to 5-FU and antimetastatic effects in 5-FU-resistant colorectal cancer cells (HCT-116/5FUR). In this study, we evaluated the effects of LDMs on the regulation of genes and proteins involved in HCT-116/5-FUR cell proliferation and metastasis. HCT-116/5-FUR cells showed high metastatic potential, significantly reduced tight junction (TJ) integrity, including increased migration and paracellular permeability, and upregulation of claudin-1 (CLDN-1). The genetic silencing of CLDN-1 increased the sensitivity of HCT-116/5FUR to 5-FU and inhibited its metastatic potential by regulating the expression of epithelial-mesenchymal transition (EMT) related genes. Co-treatment of HCT-116/5FUR with LDMs and 5-FU suppressed chemoresistant and metastatic behavior by downregulating CLDN-1 expression. Finally, we designed LDMs-based therapeutic strategies to treatment for metastatic 5-FU-resistant colorectal cancer cells. These results suggested that LDMs and 5-FU cotreatments can synergistically target 5-FU-resistant cells, making it a candidate strategy to overcome 5-FU chemoresistance improve anticancer drug efficacy.
引用
收藏
页码:967 / 977
页数:11
相关论文
共 51 条
[1]   Effect of Lactobacilli on Paracellular Permeability in the Gut [J].
Ahrne, Siv ;
Hagslatt, Marie-Louise Johansson .
NUTRIENTS, 2011, 3 (01) :104-117
[2]   Combination Therapy of Lactobacillus plantarum Supernatant and 5-Fluouracil Increases Chemosensitivity in Colorectal Cancer Cells [J].
An, JaeJin ;
Ha, Eun-Mi .
JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2016, 26 (08) :1490-1503
[3]   Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation [J].
Anderson, Rachel C. ;
Cookson, Adrian L. ;
McNabb, Warren C. ;
Park, Zaneta ;
McCann, Mark J. ;
Kelly, William J. ;
Roy, Nicole C. .
BMC MICROBIOLOGY, 2010, 10
[4]  
Aparicio T, 2011, COLON RECTUM, V5, P33, DOI 10.1007/s11725-011-0275-8
[5]   Global patterns and trends in colorectal cancer incidence and mortality [J].
Arnold, Melina ;
Sierra, Monica S. ;
Laversanne, Mathieu ;
Soerjomataram, Isabelle ;
Jemal, Ahmedin ;
Bray, Freddie .
GUT, 2017, 66 (04) :683-691
[6]   Tight Junction Proteins and Signaling Pathways in Cancer and Inflammation: A Functional Crosstalk [J].
Bhat, Ajaz A. ;
Uppada, Srijayaprakash ;
Achkar, Iman W. ;
Hashem, Sheema ;
Yadav, Santosh K. ;
Shanmugakonar, Muralitharan ;
Al-Naemi, Hamda A. ;
Haris, Mohammad ;
Uddin, Shahab .
FRONTIERS IN PHYSIOLOGY, 2019, 9
[7]   Claudin-1 promotes TNF-α-induced epithelial-mesenchymal transition and migration in colorectal adenocarcinoma cells [J].
Bhat, Ajaz A. ;
Ahmad, Rizwan ;
Uppada, SrijayaPrakash B. ;
Singh, Amar B. ;
Dhawan, Punita .
EXPERIMENTAL CELL RESEARCH, 2016, 349 (01) :119-127
[8]  
Boussios S, 2012, ANN GASTROENTEROL, V25, P106
[9]   Properties of potential probiotic Lactobacillus plantarum strains [J].
Cebeci, A ;
Gürakan, C .
FOOD MICROBIOLOGY, 2003, 20 (05) :511-518
[10]   A microbial perspective of human developmental biology [J].
Charbonneau, Mark R. ;
Blanton, Laura V. ;
DiGiulio, Daniel B. ;
Relman, David A. ;
Lebrilla, Carlito B. ;
Mills, David A. ;
Gordon, Jeffrey I. .
NATURE, 2016, 535 (7610) :48-55