Emergent cosmology revisited

被引:47
作者
Bag, Satadru [1 ]
Sahni, Varun [1 ]
Shtanov, Yuri [2 ,3 ]
Unnikrishnan, Sanil [4 ]
机构
[1] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India
[2] Bogolyubov Inst Theoret Phys, UA-03680 Kiev, Ukraine
[3] Taras Shevchenko Kiev Natl Univ, Dept Phys, Kiev, Ukraine
[4] LNM Inst Informat Technol, Dept Phys, Jaipur 302031, Rajasthan, India
来源
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS | 2014年 / 07期
关键词
modified gravity; inflation; particle physics - cosmology connection; cosmological parameters from CMBR; EINSTEIN STATIC UNIVERSE; GRAVITY; INFLATION;
D O I
10.1088/1475-7516/2014/07/034
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We explore the possibility of emergent cosmology using the effective potential formalism. We discover new models of emergent cosmology which satisfy the constraints posed by the cosmic microwave background (CMB). We demonstrate that, within the framework of modified gravity, the emergent scenario can arise in a universe which is spatially open/closed. By contrast, in general relativity (GR) emergent cosmology arises from a spatially closed past-eternal Einstein Static Universe (ESU). In GR the ESU is unstable, which creates fine tuning problems for emergent cosmology. However, modified gravity models including Braneworld models, Loop Quantum Cosmology (LQC) and Asymptotically Free Gravity result in a stable ESU. Consequently, in these models emergent cosmology arises from a larger class of initial conditions including those in which the universe eternally oscillates about the ESU fixed point. We demonstrate that such an oscillating universe is necessarily accompanied by graviton production. For a large region in parameter space graviton production is enhanced through a parametric resonance, casting serious doubts as to whether this emergent scenario can be past-eternal.
引用
收藏
页数:43
相关论文
共 50 条
[1]   Planck 2013 results. XXII. Constraints on inflation [J].
Ade, P. A. R. ;
Aghanim, N. ;
Armitage-Caplan, C. ;
Arnaud, M. ;
Ashdown, M. ;
Atrio-Barandela, F. ;
Aumont, J. ;
Baccigalupi, C. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartlett, J. G. ;
Bartolo, N. ;
Battaner, E. ;
Benabed, K. ;
Benoit, A. ;
Benoit-Levy, A. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bobin, J. ;
Bock, J. J. ;
Bonaldi, A. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Bridges, M. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Catalano, A. ;
Challinor, A. ;
Chamballu, A. ;
Chiang, H. C. ;
Chiang, L. -Y. ;
Christensen, P. R. ;
Church, S. ;
Clements, D. L. ;
Colombi, S. ;
Colombo, L. P. L. ;
Couchot, F. ;
Coulais, A. ;
Crill, B. P. ;
Curto, A. ;
Cuttaia, F. ;
Danese, L. ;
Davies, R. D. ;
Davis, R. J. ;
de Bernardis, P. .
ASTRONOMY & ASTROPHYSICS, 2014, 571
[2]   STOCHASTIC GRAVITY-WAVE BACKGROUND IN INFLATIONARY-UNIVERSE MODELS [J].
ALLEN, B .
PHYSICAL REVIEW D, 1988, 37 (08) :2078-2085
[3]   MAXIMALLY SYMMETRICAL SPIN-2 BITENSORS ON S-3 AND H-3 [J].
ALLEN, B .
PHYSICAL REVIEW D, 1995, 51 (10) :5491-5497
[4]  
[Anonymous], 1927, Annales de la Societe Scientifique de Bruxelles A, DOI DOI 10.1007/S10714-013-1548-3
[5]  
Arrowsmith D. K., 1992, DYNAMIC SYSTEMS DIFF
[6]   Quantum nature of the big bang: An analytical and numerical investigation [J].
Ashtekar, Abhay ;
Pawlowski, Tomasz ;
Singh, Parampreet .
PHYSICAL REVIEW D, 2006, 73 (12)
[7]  
Birrell N.D., 1982, QUANTUM FIELDS IN CU
[8]   Tricritical behavior of the massive chiral Gross-Neveu model [J].
Boehmer, Christian ;
Thies, Michael ;
Urlichs, Konrad .
PHYSICAL REVIEW D, 2007, 75 (10)
[9]   Violation of the weak energy condition in inflating spacetimes [J].
Borde, A ;
Vilenkin, A .
PHYSICAL REVIEW D, 1997, 56 (02) :717-723
[10]   ETERNAL INFLATION AND THE INITIAL SINGULARITY [J].
BORDE, A ;
VILENKIN, A .
PHYSICAL REVIEW LETTERS, 1994, 72 (21) :3305-3308