Matrix representations of Sturm-Liouville problems with coupled eigenparameter-dependent boundary conditions and transmission conditions

被引:13
作者
Cai, Jinming [1 ]
Zheng, Zhaowen [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
关键词
Atkinson type; eigenparameter-dependent boundary condition; finite spectrum; matrix representation; Sturm-Liouville problem; EIGENVALUE PARAMETER; EIGENFUNCTIONS; OPERATORS;
D O I
10.1002/mma.4842
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study matrix representations of Sturm-Liouville problems with coupled eigenparameter-dependent boundary conditions and transmission conditions. Meanwhile, given any matrix eigenvalue problem with coupled eigenparameter-dependent boundary conditions and transmission conditions, we construct a class of Sturm-Liouville problems with given boundary conditions and transmission conditions such that they have the same eigenvalues.
引用
收藏
页码:3495 / 3508
页数:14
相关论文
共 35 条
[1]  
[Anonymous], 2005, STURM LIOUVILLE THEO
[2]   Matrix representations of Sturm-Liouville problems with coupled eigenparameter-dependent boundary conditions [J].
Ao, Ji-jun ;
Sun, Jiong .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 244 :142-148
[3]   Matrix representations of Sturm-Liouville problems with eigenparameter-dependent boundary conditions [J].
Ao, Ji-jun ;
Sun, Jiong .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (05) :2359-2365
[4]   Matrix representations of Sturm-Liouville problems with transmission conditions [J].
Ao, Ji-jun ;
Sun, Jiong ;
Zhang, Mao-zhu .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 63 (08) :1335-1348
[5]   The finite spectrum of Sturm-Liouville problems with transmission conditions [J].
Ao, Ji-jun ;
Sun, Jiong ;
Zhang, Mao-zhu .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (04) :1166-1173
[6]  
Atkinson FV., 1964, Discrete and Continuous Boundary Value Problems
[7]   Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter. I [J].
Binding, PA ;
Browne, PJ ;
Watson, BA .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2002, 45 :631-645
[8]  
Cai J, 2017, DISCRETE DYN NAT SOC, V2017, P1
[9]  
Collatz L., 1963, EIGENWERTAUFGABEN TE