A parametric branch and bound approach to suboptimal explicit hybrid MPC

被引:47
作者
Axehill, Daniel [1 ,4 ]
Besselmann, Thomas [2 ,4 ]
Raimondo, Davide Martino [3 ,4 ]
Morari, Manfred [4 ]
机构
[1] Linkoping Univ, Div Automat Control, S-58183 Linkoping, Sweden
[2] Asea Brown Boveri Corp Res, Automat & Control, CH-5405 Baden, Switzerland
[3] Univ Pavia, Dipartimento Ingn Ind & Informaz, I-27100 Pavia, Italy
[4] ETH, Automat Control Lab, CH-8092 Zurich, Switzerland
基金
瑞士国家科学基金会; 瑞典研究理事会;
关键词
Suboptimal; Explicit MPC; Hybrid systems; Branch and bound; Stability; MULTIPARAMETRIC PROGRAMMING APPROACH;
D O I
10.1016/j.automatica.2013.10.004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article we present a parametric branch and bound algorithm for computation of optimal and suboptimal solutions to parametric mixed-integer quadratic programs and parametric mixed-integer linear programs. The algorithm returns an optimal or suboptimal parametric solution with the level of suboptimality requested by the user. An interesting application of the proposed parametric branch and bound procedure is suboptimal explicit MPC for hybrid systems, where the introduced user-defined suboptimality tolerance reduces the storage requirements and the online computational effort, or even enables the computation of a suboptimal MPC controller in cases where the computation of the optimal MPC controller would be intractable. Moreover, stability of the system in closed loop with the suboptimal controller can be guaranteed a priori. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:240 / 246
页数:7
相关论文
共 22 条
[1]   A multiparametric programming approach for linear process engineering problems under uncertainty [J].
Acevedo, J ;
Pistikopoulos, EN .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1997, 36 (03) :717-728
[2]  
Alessio A., 2006, 2 C AN DES HYBR SYST
[3]  
Axehill D., 2011, P 18 IFAC WORLD C MI, P10281
[4]   Improved Complexity Analysis of Branch and Bound for Hybrid MPC [J].
Axehill, Daniel ;
Morari, Manfred .
49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, :4216-4222
[5]  
Bank B, 1982, Non-linear parametric optimization, DOI DOI 10.1007/978-3-0348-6328-5
[6]  
Baotic Mato, 2005, PhD thesis
[7]   The explicit linear quadratic regulator for constrained systems [J].
Bemporad, A ;
Morari, M ;
Dua, V ;
Pistikopoulos, EN .
AUTOMATICA, 2002, 38 (01) :3-20
[8]  
Besselmann T., 2010, THESIS ETH ZURICH
[9]  
Borrelli F., 2003, Lecture notes in Control and Information Sciences), V290
[10]  
Camacho E.F., 2007, ADV TK CONT SIGN PRO, DOI 10.1007/978-0-85729-398-5