Propagation of ultra-short solitons in stochastic Maxwell's equations

被引:10
作者
Kurt, Levent [1 ]
Schaefer, Tobias [2 ]
机构
[1] CUNY, Borough Manhattan Community Coll, Dept Sci, New York, NY 10007 USA
[2] CUNY Coll Staten Isl, Dept Math, Staten Isl, NY 10314 USA
基金
美国国家科学基金会;
关键词
SHORT-PULSE EQUATION; OPTICAL PULSES;
D O I
10.1063/1.4859815
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the propagation of ultra-short short solitons in a cubic nonlinear medium modeled by nonlinear Maxwell's equations with stochastic variations of media. We consider three cases: variations of (a) the dispersion, (b) the phase velocity, (c) the nonlinear coefficient. Using a modified multi-scale expansion for stochastic systems, we derive new stochastic generalizations of the short pulse equation that approximate the solutions of stochastic nonlinear Maxwell's equations. Numerical simulations show that soliton solutions of the short pulse equation propagate stably in stochastic nonlinear Maxwell's equations and that the generalized stochastic short pulse equations approximate the solutions to the stochastic Maxwell's equations over the distances under consideration. This holds for both a pathwise comparison of the stochastic equations as well as for a comparison of the resulting probability densities. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:11
相关论文
共 32 条
  • [1] Propagation and interaction of optical solitons in random media
    Abdullaev, FK
    Hensen, JH
    Bischoff, S
    Sorensen, MP
    Smeltink, JW
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1998, 15 (09) : 2424 - 2432
  • [2] Soliton perturbations and the random Kepler problem
    Abdullaev, FK
    Bronski, JC
    Papanicolaou, G
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2000, 135 (3-4) : 369 - 386
  • [3] Diffractive short pulse asymptotics for nonlinear wave equations
    Alterman, D
    Rauch, J
    [J]. PHYSICS LETTERS A, 2000, 264 (05) : 390 - 395
  • [4] [Anonymous], J PHYS SOC JPN
  • [5] [Anonymous], 2007, NONLINEAR FIBER OPTI
  • [6] [Anonymous], THESIS CITY U NEW YO
  • [7] Boyd R. W., 1992, Nonlinear Optics
  • [8] The short pulse hierarchy
    Brunelli, JC
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (12)
  • [9] Pulse confinement in optical fibers with random dispersion
    Chertkov, M
    Gabitov, I
    Moeser, J
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (25) : 14208 - 14211
  • [10] Stabilization of ultra-short pulses in cubic nonlinear media
    Chung, Y.
    Schafer, T.
    [J]. PHYSICS LETTERS A, 2007, 361 (1-2) : 63 - 69