Cu2ZnSnSe4 Photovoltaic Absorber Grown by Vertical Gradient Freeze Technique

被引:5
作者
Das, Sandip [1 ]
Mandal, Krishna C. [1 ]
机构
[1] Univ S Carolina, Dept Elect Engn, Columbia, SC 29208 USA
关键词
SOLAR-CELLS; MATERIALS AVAILABILITY; THIN-FILMS; EFFICIENCY; NANOCRYSTALS; SN;
D O I
10.7567/JJAP.52.125502
中图分类号
O59 [应用物理学];
学科分类号
摘要
High quality large grain single phase Cu2ZnSnSe4 (CZTSe) photovoltaic absorber material was grown by vertical gradient freeze (VGF) technique for the first time. Polycrystalline CZTSe ingot was grown in a vacuum sealed quartz ampoule inside a modified three-zone vertical Bridgman furnace employing a directional cooling. Structural and compositional analyses of the grown crystals were performed by X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The grown crystals exhibited highly crystalline tetragonal structure corresponding to kesterite Cu2ZnSnSe4 with lattice parameters of a = 5.696 angstrom and c = 11.338 angstrom as evidenced from XRD pattern. Raman spectra showed three characteristic peaks at 171.5, 194.6, and 231.1 cm(-1) attributed to kesterite phase CZTSe. No other secondary phases were detected in the grown crystals. Thermoelectric probe measurements showed p-type conductivity of the grown crystals and energy dispersive X-ray spectroscopy (EDS) along the crystal growth direction showed uniform and stoichiometric elemental distribution. Our results show that VGF technique can be used to grow high quality kesterite compounds for photovoltaic application. (C) 2013 The Japan Society of Applied Physics
引用
收藏
页数:4
相关论文
共 25 条
[1]  
Andersson BA, 2000, PROG PHOTOVOLTAICS, V8, P61, DOI 10.1002/(SICI)1099-159X(200001/02)8:1<61::AID-PIP301>3.0.CO
[2]  
2-6
[3]   Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency [J].
Bag, Santanu ;
Gunawan, Oki ;
Gokmen, Tayfun ;
Zhu, Yu ;
Todorov, Teodor K. ;
Mitzi, David B. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (05) :7060-7065
[4]  
Das S., 2012, P 38 IEEE PHOT SPEC, V978, P2668
[5]   Single phase polycrystalline Cu2ZnSnS4 grown by vertical gradient freeze technique [J].
Das, Sandip ;
Krishna, Ramesh M. ;
Ma, Shuguo ;
Mandal, Krishna C. .
JOURNAL OF CRYSTAL GROWTH, 2013, 381 :148-152
[6]   Phase equilibria in the Cu2SnSe3-SnSe2-ZnSe system [J].
Dudchak, IV ;
Piskach, LV .
JOURNAL OF ALLOYS AND COMPOUNDS, 2003, 351 (1-2) :145-150
[7]   Solar cell efficiency tables (version 42) [J].
Green, Martin A. ;
Emery, Keith ;
Hishikawa, Yoshihiro ;
Warta, Wilhelm ;
Dunlop, Ewan D. .
PROGRESS IN PHOTOVOLTAICS, 2013, 21 (05) :827-837
[8]   Radiative recombination in Cu2ZnSnSe4 monograins studied by photoluminescence spectroscopy [J].
Grossberg, M. ;
Krustok, J. ;
Timmo, K. ;
Altosaar, M. .
THIN SOLID FILMS, 2009, 517 (07) :2489-2492
[9]   PHYSICAL-PROPERTIES OF THE QUARTERNARY CHALCOGENIDES CU2IBIICIVX4 (BII = ZN,MN,FE,CO CIV = SI,GE,SN X = S,SE) [J].
GUEN, L ;
GLAUNSINGER, WS ;
WOLD, A .
MATERIALS RESEARCH BULLETIN, 1979, 14 (04) :463-467
[10]   Fabrication of 7.2% Efficient CZTSSe Solar Cells Using CZTS Nanocrystals [J].
Guo, Qijie ;
Ford, Grayson M. ;
Yang, Wei-Chang ;
Walker, Bryce C. ;
Stach, Eric A. ;
Hillhouse, Hugh W. ;
Agrawal, Rakesh .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (49) :17384-17386