Mass Fluctuation Effect in Ti1-x Nb x S2 Bulk Compounds

被引:23
作者
Beaumale, M. [1 ]
Barbier, T. [1 ]
Breard, Y. [1 ]
Raveau, B. [1 ]
Kinemuchi, Y. [2 ]
Funahashi, R. [3 ]
Guilmeau, E. [1 ]
机构
[1] ENSICAEN, Lab CRISMAT, CNRS, UMR 6508, F-14050 Caen 4, France
[2] AIST, Natl Inst Adv Ind Sci & Technol AIST, Nagoya, Aichi 4638560, Japan
[3] AIST Ikeda, Natl Inst Adv Ind Sci & Technol AIST, Osaka 5638577, Japan
关键词
Thermoelectric; niobium; titanium disulfide; electrical properties; thermal conductivity; Seebeck coefficient; LATTICE THERMAL-CONDUCTIVITY; INTERCALATION COMPOUNDS; THERMOELECTRIC PROPERTIES; TRANSPORT-PROPERTIES; HEAT;
D O I
10.1007/s11664-013-2802-x
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The thermoelectric properties of Nb-substituted TiS2 compounds have been investigated in the temperature range of 300 K to 700 K. Polycrystalline samples in the series Ti1-x Nb (x) S-2 with x varying from 0 to 0.05 were prepared using solid-liquid-vapor reaction and spark plasma sintering. Rietveld refinements of x-ray diffraction data are consistent with the existence of full solid solution for x a parts per thousand currency sign 0.05. Transport measurements reveal that niobium can be considered as an electron donor when substituted at Ti sites. Consequently, the electrical resistivity and the absolute value of the Seebeck coefficient decrease as the Nb content increases, due to an increase in the carrier concentration. Moreover, due to mass fluctuation, the lattice thermal conductivity is reduced, leading to a slight increase of ZT values as compared with TiS2.
引用
收藏
页码:1590 / 1596
页数:7
相关论文
共 32 条
[1]   LATTICE THERMAL CONDUCTIVITY OF DISORDERED SEMICONDUCTOR ALLOYS AT HIGH TEMPERATURES [J].
ABELES, B .
PHYSICAL REVIEW, 1963, 131 (05) :1906-&
[2]   MODEL FOR LATTICE THERMAL CONDUCTIVITY AT LOW TEMPERATURES [J].
CALLAWAY, J .
PHYSICAL REVIEW, 1959, 113 (04) :1046-1051
[3]   Density functional theory analysis of the local chemical bonds in the periodic tantalum dichalcogenides TaX2 (X=S, Se, Te) [J].
Doublet, ML ;
Remy, S ;
Lemoigno, F .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (14) :5879-5890
[4]   Bulk and surface electronic structure of 1T-TiS2 and 1T-TiSe2 [J].
Fang, CM ;
deGroot, RA ;
Haas, C .
PHYSICAL REVIEW B, 1997, 56 (08) :4455-4463
[5]   STRUCTURAL-PROPERTIES OF THE TI1-XNBXS2 PHASE [J].
FURUSETH, S .
JOURNAL OF ALLOYS AND COMPOUNDS, 1992, 178 :211-215
[6]   Transport and thermoelectric properties in Copper intercalated TiS2 chalcogenide [J].
Guilmeau, E. ;
Breard, Y. ;
Maignan, A. .
APPLIED PHYSICS LETTERS, 2011, 99 (05)
[7]   From oxides to selenides and sulfides: The richness of the CdI2 type crystallographic structure for thermoelectric properties [J].
Hebert, S. ;
Kobayashi, W. ;
Muguerra, H. ;
Breard, Y. ;
Raghavendra, N. ;
Gascoin, F. ;
Guilmeau, E. ;
Maignan, A. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2013, 210 (01) :69-81
[8]   Large thermoelectric power factor in TiS2 crystal with nearly stoichiometric composition -: art. no. 241104 [J].
Imai, H ;
Shimakawa, Y ;
Kubo, Y .
PHYSICAL REVIEW B, 2001, 64 (24)
[9]   SPECIFIC-HEAT MEASUREMENTS OF INTERCALATION COMPOUNDS MXTIS2 (M=3D TRANSITION-METALS) USING AC CALORIMETRY TECHNIQUE [J].
INOUE, M ;
MUNETA, Y ;
NEGISHI, H ;
SASAKI, M .
JOURNAL OF LOW TEMPERATURE PHYSICS, 1986, 63 (3-4) :235-245
[10]   OPTICAL AND ELECTRICAL-TRANSPORT STUDIES ON LITHIUM-INTERCALATED TIS2 [J].
JULIEN, C ;
SAMARAS, I ;
GOROCHOV, O ;
GHORAYEB, AM .
PHYSICAL REVIEW B, 1992, 45 (23) :13390-13395