PRAN: Progressive Residual Attention Network for Super Resolution

被引:2
作者
Shi, Jupeng [1 ]
Li, Jing [1 ]
Chen, Yan [2 ]
Lu, Zhengjia [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing 211106, Peoples R China
[2] State Grid Shanghai Elect Power Co, Shanghai 200000, Peoples R China
来源
IEEE ACCESS | 2020年 / 8卷
关键词
Feature extraction; Training; Image reconstruction; Visualization; Task analysis; Image resolution; Deep learning; Computer vision; image enhancement; image reconstruction; machine learning; super resolution;
D O I
10.1109/ACCESS.2020.3031719
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Single image super resolution (SISR) based on deep learning has made great progress in recent years. As the method continues to improve, different network structures have been proposed to better perform SR feature extraction for reconstruction. A deep structure has a good ability to generate high-quality SR features, but the complex structure may also cause problems such as hard training and overfitting. Many efforts have also been made to solve these problems, such as feedback structure and attention mechanism. However, naively applying these methods to SR networks may be useless. Hence, in this research, we took a further step by introducing progressive residual attention to generate high-quality SR images. In experiments, we compared the reconstruction results and training progress with other SR methods based on normal structures. The proposed network achieves fast convergence speed and better SR results.
引用
收藏
页码:188611 / 188619
页数:9
相关论文
共 50 条
  • [21] A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution
    Park, Karam
    Soh, Jae Woong
    Cho, Nam Ik
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 907 - 918
  • [22] Interpretable Detail-Fidelity Attention Network for Single Image Super-Resolution
    Huang, Yuanfei
    Li, Jie
    Gao, Xinbo
    Hu, Yanting
    Lu, Wen
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 2325 - 2339
  • [23] A Two-Branch Multiscale Residual Attention Network for Single Image Super-Resolution in Remote Sensing Imagery
    Patnaik, Allen
    Bhuyan, M. K.
    Macdorman, Karl F.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 6003 - 6013
  • [24] Multi-Attention Residual Network for Image Super Resolution
    Chang, Qing
    Jia, Xiaotian
    Lu, Chenhao
    Ye, Jian
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2022, 36 (08)
  • [25] Cascading residual–residual attention generative adversarial network for image super resolution
    Jianqiang Chen
    Yali Zhang
    Xiang Hu
    Calvin Yu-Chian Chen
    Soft Computing, 2021, 25 : 9651 - 9662
  • [26] Learning Dynamic Generative Attention for Single Image Super-Resolution
    Chen, Rui
    Zhang, Yan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (12) : 8368 - 8382
  • [27] Lightweight Attended Multi-Scale Residual Network for Single Image Super-Resolution
    Yan, Yitong
    Xu, Xue
    Chen, Wenhui
    Peng, Xinyi
    IEEE ACCESS, 2021, 9 (09): : 52202 - 52212
  • [28] Joint Image Dehazing and Super-Resolution: Closed Shared Source Residual Attention Fusion Network
    Yang, Zhuoyuan
    Pan, Da
    Shi, Ping
    IEEE ACCESS, 2021, 9 : 105477 - 105492
  • [29] Visible-Assisted Infrared Image Super-Resolution Based on Spatial Attention Residual Network
    Yang, Xiaodong
    Zhang, Mengmeng
    Li, Wei
    Tao, Ran
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [30] Single Image Super-Resolution Using Asynchronous Multi-Scale Network
    Ji, Jiahuan
    Zhong, Baojiang
    Ma, Kai-Kuang
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1823 - 1827