Semi-classical limit of the Levy-Lieb functional in Density Functional Theory

被引:29
作者
Lewin, Mathieu [1 ,2 ]
机构
[1] PSL Res Univ, Univ Paris Dauphine, CNRS, F-75016 Paris, France
[2] PSL Res Univ, Univ Paris Dauphine, CEREMADE, F-75016 Paris, France
基金
欧洲研究理事会;
关键词
COULOMB COST; ORBITALS;
D O I
10.1016/j.crma.2018.03.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a recent work, Bindini and De Pascale have introduced a regularization of N-particle symmetric probabilities that preserves their one-particle marginals. In this short note, we extend their construction to mixed quantum fermionic states. This enables us to prove the convergence of the Levy-Lieb functional in Density Functional Theory, to the corresponding multi-marginal optimal transport in the semi-classical limit. Our result holds for mixed states of any particle number N, with or without spin. (C) 2018 Academie des sciences. Published by Elsevier Masson SAS.
引用
收藏
页码:449 / 455
页数:7
相关论文
共 16 条
  • [1] Bindini U., 2017, ARXIV E PRINTS
  • [2] Continuity and Estimates for Multimarginal Optimal Transportation Problems with Singular Costs
    Buttazzo, Giuseppe
    Champion, Thierry
    De Pascale, Luigi
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2018, 78 (01) : 185 - 200
  • [3] Optimal-transport formulation of electronic density-functional theory
    Buttazzo, Giuseppe
    De Pascale, Luigi
    Gori-Giorgi, Paola
    [J]. PHYSICAL REVIEW A, 2012, 85 (06):
  • [4] CANCES E., 2003, HDB NUMERICAL ANAL, P3, DOI 10.1016/S1570-8659(03)10003-8
  • [5] Equality between Monge and Kantorovich multimarginal problems with Coulomb cost
    Colombo, Maria
    Di Marino, Simone
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (02) : 307 - 320
  • [6] Infinite-body optimal transport with Coulomb cost
    Cotar, Codina
    Friesecke, Gero
    Pass, Brendan
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) : 717 - 742
  • [7] Density Functional Theory and Optimal Transportation with Coulomb Cost
    Cotar, Codina
    Friesecke, Gero
    Klueppelberg, Claudia
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2013, 66 (04) : 548 - 599
  • [8] Di Marino S., 2015, ARXIV E PRINTS
  • [9] N-density representability and the optimal transport limit of the Hohenberg-Kohn functional
    Friesecke, Gero
    Mendl, Christian B.
    Pass, Brendan
    Cotar, Codina
    Klueppelberg, Claudia
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (16)
  • [10] Electronic Zero-Point Oscillations in the Strong-interaction Limit of Density Functional Theory
    Gori-Giorgi, Paola
    Vignale, Giovanni
    Seidl, Michael
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2009, 5 (04) : 743 - 753