On the existence of an invariant measure for isotropic diffusions in random environment

被引:1
作者
Fehrman, Benjamin J. [1 ]
机构
[1] Max Planck Inst Math Sci, Inselstr 22, D-04103 Leipzig, Germany
关键词
Invariant measure; Stochastic homogenization; Diffusion in random environment; PRINCIPLE;
D O I
10.1007/s00440-016-0714-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The results of this paper build upon those first obtained by Sznitman and Zeitouni (Invent Math 164(3), 455-567, 2006). We establish, for spacial dimensions , the existence of a unique invariant measure for isotropic diffusions in random environment on which are small perturbations of Brownian motion. Furthermore, we establish a general homogenization result for initial data which are locally measurable with respect to the coefficients.
引用
收藏
页码:409 / 453
页数:45
相关论文
共 13 条
[1]  
[Anonymous], 2006, Classics in Mathematics
[2]  
[Anonymous], 2011, ASYMPTOTIC ANAL PERI, DOI DOI 10.1090/CHEL/374
[3]   RANDOM-WALKS IN ASYMMETRIC RANDOM-ENVIRONMENTS [J].
BRICMONT, J ;
KUPIAINEN, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 142 (02) :345-420
[4]   AN INVARIANCE-PRINCIPLE FOR REVERSIBLE MARKOV-PROCESSES - APPLICATIONS TO RANDOM MOTIONS IN RANDOM-ENVIRONMENTS [J].
DEMASI, A ;
FERRARI, PA ;
GOLDSTEIN, S ;
WICK, WD .
JOURNAL OF STATISTICAL PHYSICS, 1989, 55 (3-4) :787-855
[5]  
FRIEDMAN A., 1964, Partial differential equations of parabolic type
[6]  
Kozlov S. M., 1985, USP MAT NAUK, V40, p[61, 238]
[7]  
OLLA S, 1994, HOMOGENIZATION DIFFU
[8]  
OSADA H, 1983, LECT NOTES MATH, V1021, P507
[9]  
Papanicolaou G., 1982, Statistics and Probability, P547
[10]  
Papanicolaou GC., 1979, Colloquia mathematica Societatis Jnos Bolyai, V27, P835