CONCAVE FUNCTIONS OF PARTITIONED MATRICES WITH NUMERICAL RANGES IN A SECTOR

被引:8
作者
Hou, Lei [1 ]
Zhang, Dengpeng [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2017年 / 20卷 / 02期
基金
美国国家科学基金会;
关键词
Rotfel'd theorem; concave function; numerical range; accretive-dissipative matrix; ACCRETIVE-DISSIPATIVE MATRICES; DETERMINANTAL INEQUALITIES; EIGENVALUE INEQUALITIES; EXTENSION; CONVEX;
D O I
10.7153/mia-20-40
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove two inequalities for concave functions and partitioned matrices whose numerical ranges in a sector. These complement some results of Zhang in [Linear Multilinear Algebra 63 (2015) 2511-2517].
引用
收藏
页码:583 / 589
页数:7
相关论文
共 20 条
  • [1] [Anonymous], 2013, Matrix Analysis
  • [2] Eigenvalue inequalities for convex and log-convex functions
    Aujla, Jaspal Singh
    Bourin, Jean-Christophe
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 424 (01) : 25 - 35
  • [3] The singular values of A+B and A+iB
    Bhatia, Rajendra
    Kittaneh, Fuad
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (09) : 1502 - 1508
  • [4] Unitary orbits of Hermitian operators with convex or concave functions
    Bourin, Jean-Christophe
    Lee, Eun-Young
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2012, 44 : 1085 - 1102
  • [5] An asymmetric Kadison's inequality
    Bourin, Jean-Christophe
    Ricard, Eric
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (03) : 499 - 510
  • [6] SINGULAR VALUE INEQUALITIES FOR MATRICES WITH NUMERICAL RANGES IN A SECTOR
    Drury, Stephen
    Lin, Minghua
    [J]. OPERATORS AND MATRICES, 2014, 8 (04): : 1143 - 1148
  • [7] FU H. X., 2016, LINEAR MULTILINEAR A, V64, P105
  • [8] On the properties of accretive-dissipative matrices
    George, A
    Ikramov, KD
    [J]. MATHEMATICAL NOTES, 2005, 77 (5-6) : 767 - 776
  • [9] IKRAMOV KH. D., 2002, DOKL ROSS AKAD NAUK, V384, P585
  • [10] Ikramov KhD., 2004, J MATH SCI N Y, V121, P2458, DOI DOI 10.1023/B:JOTH.0000026283.92486.1c