Learning nonlinear dynamical systems using an EM algorithm

被引:0
作者
Ghahramani, Z [1 ]
Roweis, ST [1 ]
机构
[1] Univ Coll London, Gatsby Comp Neurosci Unit, London WC1N 3AR, England
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 11 | 1999年 / 11卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Expectation-Maximization (EM) algorithm is an iterative procedure for maximum likelihood parameter estimation from data sets with missing or hidden variables [2]. It has been applied to system identification in linear stochastic state-space models, where the state variables are hidden from the observer and both the state and the parameters of the model have to be estimated simultaneously [9]. We present a generalization of the EM algorithm for parameter estimation in nonlinear dynamical systems. The "expectation" step makes use of Extended Kalman Smoothing to estimate the state, while the "maximization" step re-estimates the parameters using these uncertain state estimates. In general, the nonlinear maximization step is difficult because it requires integrating out the uncertainty in the states. However, if Gaussian radial basis function (RBF) approximators are used to model the nonlinearities, the integrals become tractable and the maximization step can be solved via systems of linear equations.
引用
收藏
页码:431 / 437
页数:7
相关论文
共 8 条
[1]  
[Anonymous], 1993, PROBABILISTIC INFERE
[2]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[3]  
JORDAN MI, 1999, MACHINE LEARNING
[4]  
Kalman R.E., 1961, J BASIC ENG-T ASME, V83, P95, DOI [DOI 10.1115/1.3658902, 10.1115/1.3658902]
[5]  
LJUNG L, 1983, THEORY PRACTISE RECU
[6]   Fast Learning in Networks of Locally-Tuned Processing Units [J].
Moody, John ;
Darken, Christian J. .
NEURAL COMPUTATION, 1989, 1 (02) :281-294
[7]   SOLUTIONS TO LINEAR SMOOTHING PROBLEM [J].
RAUCH, HE .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1963, AC 8 (04) :371-&
[8]  
Shumway R. H., 1982, Journal of Time Series Analysis, V3, P253, DOI 10.1111/j.1467-9892.1982.tb00349.x