Mitochondria-targeted peptide antioxidants: Novel neuroprotective agents

被引:266
作者
Szeto, Hazel H. [1 ]
机构
[1] Cornell Univ, Weill Med Coll, Dept Pharmacol, New York, NY 10021 USA
关键词
reactive oxygen species; mitochondrial permeability transition; apoptosis; necrosis; Parkinson's disease; amyotrophic lateral sclerosis;
D O I
10.1208/aapsj080362
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Increasing evidence suggests that mitochondrial dysfunction and oxidative stress play a crucial role in the majority of neurodegenerative diseases. Mitochondria are a major source of intracellular reactive oxygen species (ROS) and are particularly vulnerable to oxidative stress. Oxidative damage to mitochondria has been shown to impair mitochondrial function and lead to cell death via apoptosis and necrosis. Because dysfunctional mitochondria will produce more ROS, a feed-forward loop is set up whereby ROS-mediated oxidative damage to mitochondria favors more ROS generation, resulting in a vicious cycle. It is now appreciated that reduction of mitochondrial oxidative stress may prevent or slow down the progression of these neurodegenerative disorders. However, if mitochondria are the major source of intracellular ROS and mitochondria are most vulnerable to oxidative damage, then it would be ideal to deliver the antioxidant therapy to mitochondria. This review will summarize the development of a novel class of mitochondria-targeted antioxidants that can protect mitochondria against oxidative stress and prevent neuronal cell death in animal models of stroke, Parkinson's disease, and amyotrophic lateral sclerosis.
引用
收藏
页码:E521 / E531
页数:11
相关论文
共 81 条
[1]   Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury [J].
Adlam, VJ ;
Harrison, JC ;
Porteous, CM ;
James, AM ;
Smith, RAJ ;
Murphy, MP ;
Sammut, IA .
FASEB JOURNAL, 2005, 19 (09) :1088-1095
[2]   Oxidative stress in neurodegeneration: cause or consequence? [J].
Andersen, JK .
NATURE MEDICINE, 2004, 10 (07) :S18-S25
[3]   Mitochondrial metabolism of reactive oxygen species [J].
Andreyev, AI ;
Kushnareva, YE ;
Starkov, AA .
BIOCHEMISTRY-MOSCOW, 2005, 70 (02) :200-214
[4]  
Beal MF, 1997, MOL ASPECTS MED, V18, pS169
[5]   Oxidatively modified proteins in aging and disease [J].
Beal, MF .
FREE RADICAL BIOLOGY AND MEDICINE, 2002, 32 (09) :797-803
[6]   Mitochondria take center stage in aging and neurodegeneration [J].
Beal, MF .
ANNALS OF NEUROLOGY, 2005, 58 (04) :495-505
[7]  
Beal MF, 2003, ANN NY ACAD SCI, V991, P120
[8]   Superoxide dismutase and the death of motoneurons in ALS [J].
Beckman, JS ;
Estévez, AG ;
Crow, JR .
TRENDS IN NEUROSCIENCES, 2001, 24 (11) :S15-S20
[9]   The energetics of Huntington's disease [J].
Browne, SE ;
Beal, MF .
NEUROCHEMICAL RESEARCH, 2004, 29 (03) :531-546
[10]   Contribution of increased mitochondrial free Ca2+ to the mitochondrial permeability transition induced by tert-butylhydroperoxide in rat hepatocytes [J].
Byrne, AM ;
Lemasters, JJ ;
Nieminen, AL .
HEPATOLOGY, 1999, 29 (05) :1523-1531