Strong, Thermally Superinsulating Biopolymer-Silica Aerogel Hybrids by Cogelation of Silicic Acid with Pectin

被引:151
作者
Zhao, Shanyu [1 ]
Malfait, Wim J. [1 ]
Demilecamps, Arnaud [4 ]
Zhang, Yucheng [2 ]
Brunner, Samuel [1 ]
Huber, Lukas [1 ]
Tingaut, Philippe [3 ]
Rigacci, Arnaud [5 ]
Budtova, Tatiana [4 ]
Koebel, Matthias M. [1 ]
机构
[1] Swiss Fed Labs Mat Sci & Technol, Bldg Energy Mat & Components Lab, EMPA, CH-8600 Dubendorf, Switzerland
[2] Swiss Fed Labs Mat Sci & Technol, Ctr Electron Microscopy, EMPA, CH-8600 Dubendorf, Switzerland
[3] Swiss Fed Labs Mat Sci & Technol, Wood Lab, EMPA, CH-8600 Dubendorf, Switzerland
[4] MINES ParisTech, CEMEF Ctr Mise Forme Mat, UMR CNRS 7635, F-06904 Sophia Antipolis, France
[5] MINES ParisTech, PERSEE Ctr Proc Energies Renouvelables & Syst Ene, F-06904 Sophia Antipolis, France
关键词
hybrid aerogels; NMR spectroscopy; polysaccharides; transmission electron microscopy; MECHANICALLY STRONG; INSULATION;
D O I
10.1002/anie.201507328
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Silica aerogels are excellent thermal insulators, but their brittle nature has prevented widespread application. To overcome these mechanical limitations, silica-biopolymer hybrids are a promising alternative. A one-pot process to monolithic, superinsulating pectin-silica hybrid aerogels is presented. Their structural and physical properties can be tuned by adjusting the gelation pH and pectin concentration. Hybrid aerogels made at pH 1.5 exhibit minimal dust release and vastly improved mechanical properties while remaining excellent thermal insulators. The change in the mechanical properties is directly linked to the observed "neck-free" nanoscale network structure with thicker struts. Such a design is superior to "neck-limited", classical inorganic aerogels. This new class of materials opens up new perspectives for novel silica-biopolymer nanocomposite aerogels.
引用
收藏
页码:14282 / 14286
页数:5
相关论文
共 51 条
[21]   Coherent expanded aerogels and jellies. [J].
Kistler, SS .
NATURE, 1931, 127 :741-741
[22]  
Kobayashi Y, 2014, ANGEW CHEM, V126, P10562, DOI DOI 10.1002/ANGE.201405123
[23]   Aerogels with 3D Ordered Nanofiber Skeletons of Liquid-Crystalline Nanocellulose Derivatives as Tough and Transparent Insulators [J].
Kobayashi, Yuri ;
Saito, Tsuguyuki ;
Isogai, Akira .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (39) :10394-10397
[24]  
Koebel M. M., 2011, AEROGELS HDB, P607
[25]  
Krug H.F., 2014, Angew. Chem, V126, P12502, DOI [10.1002/ange.201403367, DOI 10.1002/ANGE.201403367]
[26]   Nanosafety Research-Are We on the Right Track? [J].
Krug, Harald F. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (46) :12304-12319
[27]  
Lee J. K., 2007, US Pat, Patent No. [# 20070259979 Al, 20070259979]
[28]   Three-dimensional core-shell superstructures: Mechanically strong aerogels [J].
Leventis, Nicholas .
ACCOUNTS OF CHEMICAL RESEARCH, 2007, 40 (09) :874-884
[29]   Flexible Nanofiber-Reinforced Aerogel (Xerogel) Synthesis, Manufacture, and Characterization [J].
Li, Lichun ;
Yalcin, Baris ;
Nguyen, Baochau N. ;
Meador, Mary Ann B. ;
Cakmak, Miko .
ACS APPLIED MATERIALS & INTERFACES, 2009, 1 (11) :2491-2501
[30]   Structure and Properties of Soy Protein/Poly(butylene succinate) Blends with Improved Compatibility [J].
Li, Yi-Dong ;
Zeng, Jian-Bing ;
Wang, Xiu-Li ;
Yang, Ke-Ke ;
Wang, Yu-Zhong .
BIOMACROMOLECULES, 2008, 9 (11) :3157-3164