Distance metrics for ranked evolutionary trees

被引:20
作者
Kim, Jaehee [1 ]
Rosenberg, Noah A. [1 ]
Palacios, Julia A. [2 ,3 ]
机构
[1] Stanford Univ, Dept Biol, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[3] Stanford Sch Med, Dept Biomed Data Sci, Stanford, CA 94305 USA
基金
美国国家卫生研究院;
关键词
coalescent; distance metric; phylogenetics; ranked genealogy; ranked tree shape; PHYLOGENETIC TREES; POPULATION-SIZE; SHAPE; COALESCENT; DYNAMICS; STATISTICS; SPECIATION; PATTERNS; MODELS; VIRUS;
D O I
10.1073/pnas.1922851117
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Genealogical tree modeling is essential for estimating evolution-ary parameters in population genetics and phylogenetics. Recent mathematical results concerning ranked genealogies without leaf labels unlock opportunities in the analysis of evolutionary trees. In particular, comparisons between ranked genealogies facilitate the study of evolutionary processes of different organisms sampled at multiple time periods. We propose metrics on ranked tree shapes and ranked genealogies for lineages isochronously and heterochronously sampled. Our proposed tree metrics make it possible to conduct statistical analyses of ranked tree shapes and timed ranked tree shapes or ranked genealogies. Such analyses allow us to assess differences in tree distributions, quantify estimation uncertainty, and summarize tree distributions. We show the utility of our metrics via simulations and an application in infectious diseases.
引用
收藏
页码:28876 / 28886
页数:11
相关论文
共 68 条
[1]  
Aldous D., 1996, The IMA Volumes in Mathematics and its Applications, P1, DOI DOI 10.1007/978-1-4612-0719-1_1
[2]   Stochastic models and descriptive statistics for phylogenetic trees, from Yule to today [J].
Aldous, DJ .
STATISTICAL SCIENCE, 2001, 16 (01) :23-34
[3]  
Allen B. L., 2001, ANN COMB, V5, P1, DOI [DOI 10.1007/S00026-001-8006-8, 10.1007/s00026-001-8006-8]
[4]  
[Anonymous], 2015, ARXIV150102393
[5]  
[Anonymous], 2012, Matrix computations
[6]  
[Anonymous], 2022, Testing Statistical Hypotheses, DOI DOI 10.1007/978-3-030-70578-7
[7]   COMPUTING MEDIANS AND MEANS IN HADAMARD SPACES [J].
Bacak, Miroslav .
SIAM JOURNAL ON OPTIMIZATION, 2014, 24 (03) :1542-1566
[8]   Temporally structured metapopulation dynamics and persistence of influenza A H3N2 virus in humans [J].
Bahl, Justin ;
Nelson, Martha I. ;
Chan, Kwok H. ;
Chen, Rubing ;
Vijaykrishna, Dhanasekaran ;
Halpin, Rebecca A. ;
Stockwell, Timothy B. ;
Lin, Xudong ;
Wentworth, David E. ;
Ghedin, Elodie ;
Guan, Yi ;
Peiris, J. S. Malik ;
Riley, Steven ;
Rambaut, Andrew ;
Holmes, Edward C. ;
Smith, Gavin J. D. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (48) :19359-19364
[9]   Geometry of the space of phylogenetic trees [J].
Billera, LJ ;
Holmes, SP ;
Vogtmann, K .
ADVANCES IN APPLIED MATHEMATICS, 2001, 27 (04) :733-767
[10]   Which random processes describe the tree of life?: A large-scale study of phylogenetic tree imbalance [J].
Blum, Michael G. B. ;
Francois, Olivier .
SYSTEMATIC BIOLOGY, 2006, 55 (04) :685-691