Directional stability theorem and directional metric regularity

被引:22
作者
Arutyunov, Aram K.
Izmailov, Alexey F.
机构
[1] Peoples Friendship Univ, Moscow 117198, Russia
[2] Moscow MV Lomonosov State Univ, Dept Operat Res, Fac Computat Math & Cybernet, Moscow 119992, Russia
关键词
metric regularity; Robinson's constraint qualification; directional regularity; directional metric regularity; feasible arc; sensitivity;
D O I
10.1287/moor.1060.0203
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We develop a new regularity concept, unifying metric regularity, Robinson's constraint qualification, and directional regularity. We present the directional stability theorem and the related concept of directional metric regularity. On one hand, our directional stability theorem immediately implies Robinson's stability theorem [Arutyunov, A. V 2005. Covering of nonlinear maps on cone in neighborhood of abnormal point. Math. Notes 77 447-460.] as a particular case, while on the other hand, our theorem easily implies various stability results under the directional regularity condition, widely used in sensitivity analysis. Some applications of this kind are also presented.
引用
收藏
页码:526 / 543
页数:18
相关论文
共 50 条
  • [41] Stability of systems of linear equations and inequalities:: distance to ill-posedness and metric regularity
    Canovas, M. J.
    Gomez-Senent, F. J.
    Parra, J.
    OPTIMIZATION, 2007, 56 (1-2) : 1 - 24
  • [42] METRIC REGULARITY AND ULAM-HYERS STABILITY RESULTS FOR COINCIDENCE PROBLEMS WITH MULTIVALUED OPERATORS
    Mlesnite, Oana
    Petrusel, Adrian
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2015, 16 (07) : 1397 - 1413
  • [43] Visual directional anisotropy does not mirror the directional anisotropy apparent in postural sway
    Holten, Vivian
    Donker, Stella F.
    Stuit, Sjoerd M.
    Verstraten, Frans A. J.
    van der Smagt, Maarten J.
    PERCEPTION, 2015, 44 (05) : 477 - 489
  • [44] Metric Regularity for Set-Valued Maps in Frechet-Montel Spaces. Implicit Mapping Theorem
    Ivanov, M.
    Quincampoix, M.
    Zlateva, N.
    SET-VALUED AND VARIATIONAL ANALYSIS, 2023, 31 (02)
  • [45] Metric Regularity of the Sum of Multifunctions and Applications
    Huynh Van Ngai
    Nguyen Huu Tron
    Michel Théra
    Journal of Optimization Theory and Applications, 2014, 160 : 355 - 390
  • [46] METRIC REGULARITY OF NEWTON'S ITERATION
    Aragon Artacho, F. J.
    Dontchev, A. L.
    Gaydu, M.
    Geoffroy, M. H.
    Veliov, V. M.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (02) : 339 - 362
  • [47] Characterization of metric regularity of sub differentials
    Aragon Artacho, Francisco J.
    Geoffroy, Michel H.
    JOURNAL OF CONVEX ANALYSIS, 2008, 15 (02) : 365 - 380
  • [48] Characterization of metric regularity for σ-subsmooth multifunctions
    Zheng, Xi Yin
    He, Qing Hai
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 100 : 111 - 121
  • [49] Metric Regularity of the Sum of Multifunctions and Applications
    Huynh Van Ngai
    Nguyen Huu Tron
    Thera, Michel
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 160 (02) : 355 - 390
  • [50] Metric Subregularity and ω(⋅)-Normal Regularity Properties
    Nacry, Florent
    Nguyen, Vo Anh Thuong
    Venel, Juliette
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 203 (02) : 1439 - 1470