We develop a new regularity concept, unifying metric regularity, Robinson's constraint qualification, and directional regularity. We present the directional stability theorem and the related concept of directional metric regularity. On one hand, our directional stability theorem immediately implies Robinson's stability theorem [Arutyunov, A. V 2005. Covering of nonlinear maps on cone in neighborhood of abnormal point. Math. Notes 77 447-460.] as a particular case, while on the other hand, our theorem easily implies various stability results under the directional regularity condition, widely used in sensitivity analysis. Some applications of this kind are also presented.
机构:
Univ Perpignan Via Domitia, LAMPS, F-66000 Perpignan, FranceUniv Perpignan Via Domitia, LAMPS, F-66000 Perpignan, France
Nacry, Florent
Nguyen, Vo Anh Thuong
论文数: 0引用数: 0
h-index: 0
机构:
Univ Perpignan Via Domitia, LAMPS, F-66000 Perpignan, FranceUniv Perpignan Via Domitia, LAMPS, F-66000 Perpignan, France
Nguyen, Vo Anh Thuong
Venel, Juliette
论文数: 0引用数: 0
h-index: 0
机构:
Univ Polytech Hauts De France, INSA Hauts De France, CERAMATHS, F-59313 Valenciennes, FranceUniv Perpignan Via Domitia, LAMPS, F-66000 Perpignan, France
机构:
Univ Perpignan Via Domitia, LAMPS, F-66000 Perpignan, FranceUniv Perpignan Via Domitia, LAMPS, F-66000 Perpignan, France
Nacry, Florent
Nguyen, Vo Anh Thuong
论文数: 0引用数: 0
h-index: 0
机构:
Univ Perpignan Via Domitia, LAMPS, F-66000 Perpignan, FranceUniv Perpignan Via Domitia, LAMPS, F-66000 Perpignan, France
Nguyen, Vo Anh Thuong
Venel, Juliette
论文数: 0引用数: 0
h-index: 0
机构:
Univ Polytech Hauts De France, INSA Hauts De France, CERAMATHS, F-59313 Valenciennes, FranceUniv Perpignan Via Domitia, LAMPS, F-66000 Perpignan, France