Secret Sharing Schemes for (k, n)-Consecutive Access Structures

被引:2
|
作者
Herranz, Javier [1 ,2 ]
Saez, German [1 ,2 ]
机构
[1] Univ Politecn Cataluna, Dept Matemat, C Jordi Girona 1-3, Barcelona 08034, Spain
[2] CYBERCAT Ctr Cybersecur Res Catalonia, Barcelona, Spain
来源
CRYPTOLOGY AND NETWORK SECURITY, CANS 2018 | 2018年 / 11124卷
关键词
Secret sharing schemes; Ideal access structures; Information rate; DECOMPOSITION;
D O I
10.1007/978-3-030-00434-7_23
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider access structures over a set P of n participants, defined by a parameter k with 1 <= k <= n in the following way: a subset is authorized if it contains participants i, i + 1, ... , i + k - 1, for some i is an element of {1, ... , n - k + 1}. We call such access structures, which may naturally appear in real applications involving distributed cryptography, (k, n)-consecutive. We prove that these access structures are only ideal when k = 1, n - 1, n. Actually, we obtain the same result that has been obtained for other families of access structures: being ideal is equivalent to being a vector space access structure and is equivalent to having an optimal information rate strictly bigger than 2/3. For the non-ideal cases, we give either the exact value of the optimal information rate, for k = n - 2 and k = n - 3, or some bounds on it.
引用
收藏
页码:463 / 480
页数:18
相关论文
共 50 条
  • [31] Ideal Multipartite Secret Sharing Schemes
    Farras, Oriol
    Marti-Farre, Jaume
    Padro, Carles
    JOURNAL OF CRYPTOLOGY, 2012, 25 (03) : 434 - 463
  • [32] Ideal multipartite secret sharing schemes
    Farras, Oriol
    Marti-Farre, Jaume
    Padro, Carles
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2007, 2007, 4515 : 448 - +
  • [33] Weighted threshold secret sharing schemes
    Morillo, P
    Padró, C
    Sáez, G
    Villar, JL
    INFORMATION PROCESSING LETTERS, 1999, 70 (05) : 211 - 216
  • [34] Ideal Multipartite Secret Sharing Schemes
    Oriol Farràs
    Jaume Martí-Farré
    Carles Padró
    Journal of Cryptology, 2012, 25 : 434 - 463
  • [35] Secret sharing schemes with three or four minimal qualified subsets
    Martí-Farré, J
    Padró, C
    DESIGNS CODES AND CRYPTOGRAPHY, 2005, 34 (01) : 17 - 34
  • [36] Secret Sharing Schemes with Three or Four Minimal Qualified Subsets
    Jaume Martí-Farré
    Carles Padró
    Designs, Codes and Cryptography, 2005, 34 : 17 - 34
  • [37] Generation of key predistribution schemes using secret sharing schemes
    Sáez, G
    DISCRETE APPLIED MATHEMATICS, 2003, 128 (01) : 239 - 249
  • [38] New construction of perfect secret sharing schemes for graph-based prohibited structures
    Sun, HM
    COMPUTERS & ELECTRICAL ENGINEERING, 1999, 25 (04) : 267 - 277
  • [39] UNIVERSALLY IDEAL SECRET-SHARING SCHEMES
    BEIMEL, A
    CHOR, B
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (03) : 786 - 794
  • [40] On ideal homomorphic secret sharing schemes and their decomposition
    Ghasemi, Fatemeh
    Kaboli, Reza
    Khazaei, Shahram
    Parviz, Maghsoud
    Rafiei, Mohammad-Mahdi
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (09) : 2079 - 2096