Branched covers of quasi-positive links and L-spaces

被引:17
作者
Boileau, Michel [1 ]
Boyer, Steven [2 ]
Gordon, Cameron McA. [3 ]
机构
[1] Aix Marseille Univ, Cent Marseille, CNRS, I2M, 39 Rue F Joliot Curie, F-13453 Marseille 13, France
[2] Univ Quebec Montreal, Dept Math, 201 Ave President Kennedy, Montreal, PQ H2X 3Y7, Canada
[3] Univ Texas Austin, Dept Math, 1 Univ Stn, Austin, TX 78712 USA
基金
英国工程与自然科学研究理事会;
关键词
57M25 (primary); 57M50; 57M99 (secondary); KNOT FLOER HOMOLOGY; LEFT-ORDERABILITY; QUASIPOSITIVITY; INVARIANTS; FOLIATIONS; SURFACES; GENUS; SIGNATURE; TOPOLOGY; NUMBERS;
D O I
10.1112/topo.12092
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L be an oriented link such that sigma n(L), the n-fold cyclic cover of S3 branched over L, is an L-space for some n > 2. We show that if either L is a strongly quasi-positive link other than one with Alexander polynomial a multiple of (t-1)2g(L)+(|L|-1), or L is a quasi-positive link other than one with Alexander polynomial divisible by (t-1)2g4(L)+(|L|-1), then there is an integer n(L), determined by the Alexander polynomial of L in the first case and the Alexander polynomial of L and the smooth 4-genus of L, g4(L), in the second, such that n <= n(L). If K is a strongly quasi-positive knot with monic Alexander polynomial such as an L-space knot, we show that sigma n(K) is not an L-space for n > 6, and that the Alexander polynomial of K is a non-trivial product of cyclotomic polynomials if sigma n(K) is an L-space for some n=2,3,4,5. Our results allow us to calculate the smooth and topological 4-ball genera of, for instance, quasi-alternating quasi-positive links. They also allow us to classify strongly quasi-positive alternating links and 3-strand pretzel links.
引用
收藏
页码:536 / 576
页数:41
相关论文
共 99 条
[1]  
A'Campo N, 1998, PUBL MATH, P151
[2]  
ACampo N., 1999, Ann. Fac. Sci. Toulouse, V8, P5, DOI [10.5802/afst.918, DOI 10.5802/AFST.918]
[3]  
[Anonymous], 1999, Mathematical surveys and monographs
[4]  
Ba I., ARXIV180102692
[6]  
Baader S, 2005, OSAKA J MATH, V42, P257
[7]  
Baader S., 2012, PREPRINT
[8]  
Baader S, 2013, ENSEIGN MATH, V59, P351
[9]  
Baker K., 2017, PREPRINT
[10]  
Baker K. L., 2014, PREPRINT