SEMICLASSICAL MICROLOCAL NORMAL FORMS AND GLOBAL SOLUTIONS OF MODIFIED ONE-DIMENSIONAL KG EQUATIONS

被引:15
作者
Delort, Jean-Marc [1 ]
机构
[1] Univ Paris 13, Sorbonne Paris Cite, LAGA, CNRS UMR 7539, 99 Ave JB Clement, F-93430 Villetaneuse, France
关键词
Global solution of Klein-Gordon equations; Klainerman vector fields; Microlocal normal forms; Semiclassical analysis; KLEIN-GORDON EQUATIONS; WATER-WAVE PROBLEM; SMALL AMPLITUDE SOLUTIONS; ONE SPACE DIMENSION; ASYMPTOTIC-BEHAVIOR; SOBOLEV SPACES; WELL-POSEDNESS; SYSTEMS; SCATTERING; EXISTENCE;
D O I
10.5802/aif.3041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The method of Klainerman vector fields plays an essential role in the study of global existence of solutions of nonlinear hyperbolic PDEs, with small, smooth, decaying Cauchy data. Nevertheless, it turns out that some equations of physics, like the one dimensional water waves equation with finite depth, do not possess any Klainerman vector field. The goal of this paper is to design, on a model equation, a substitute to the Klainerman vector fields method, that allows one to get global existence results, even in the critical case for which linear scattering does not hold at infinity. The main idea is to use semiclassical pseudodifferential operators instead of vector fields, combined with microlocal normal forms, to reduce the nonlinearity to expressions for which a Leibniz rule holds for these operators.
引用
收藏
页码:1451 / 1528
页数:78
相关论文
共 37 条
  • [1] ALAZARD T., 2016, ANN SCI ECO IN PRESS
  • [2] ALAZARD T., 2016, ASTERIQUE IN PRESS
  • [3] Global existence and asymptotics for the quasilinear Klein-Gordon equation with small data in one space dimension (vol 34, pg 1, 2001)
    Delort, Jean-Marc
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2006, 39 (02): : 335 - 345
  • [4] Delort PJM, 2001, ANN SCI ECOLE NORM S, V34, P1
  • [5] Dimassi Mouez., 1999, London Math. Soc, V268, P227
  • [6] Global solutions for 2D quadratic Schrodinger equations
    Germain, P.
    Masmoudi, N.
    Shatah, J.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 97 (05): : 505 - 543
  • [7] Global solutions for the gravity water waves equation in dimension 3
    Germain, P.
    Masmoudi, N.
    Shatah, J.
    [J]. ANNALS OF MATHEMATICS, 2012, 175 (02) : 691 - 754
  • [8] GERMAIN P., JOURNEES EQUATIONS D
  • [9] GLOBAL EXISTENCE FOR COUPLED KLEIN-GORDON EQUATIONS WITH DIFFERENT SPEEDS
    Germain, Pierre
    [J]. ANNALES DE L INSTITUT FOURIER, 2011, 61 (06) : 2463 - 2506
  • [10] Global Solutions for 3D Quadratic Schrodinger Equations
    Germain, Pierre
    Masmoudi, Nader
    Shatah, Jalal
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (03) : 414 - 432