New Approach to Predict Shear Capacity of Reinforced Concrete Beams Strengthened with Near-Surface-Mounted Technique

被引:9
作者
Baghi, Hadi [1 ]
Barros, Joaquim A. O. [1 ]
机构
[1] Univ Minho, Dept Civil Engn, P-4719 Braga, Portugal
关键词
beams; carbon fiber-reinforced polymers; near-surface-mounted technique; reinforced concrete; shear failure; shear strengthening; RC BEAMS; BARS;
D O I
10.14359/51689433
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Understanding the shear behavior of a concrete beam is still a challenging task due to several complex mechanisms involved. The Modified Compression Field Theory (MCFT) demonstrated an ability to predict, with good accuracy, the shear capacity of reinforced concrete (RC) members. Due to its iterative nature, the MCFT is not a straightforward design methodology, and a simplified MCFT (SMCFT) approach of this method was proposed to overcome this aspect. This model takes into account the tensile stress installed in the cracked concrete and inclination of the diagonal compressive strut, and requires a smaller number of model parameters than MCFT. This paper presents a new approach to predict the shear capacity of RC beams shear strengthened with fiber-reinforced polymer (FRP) laminates/rods applied according to the near-surface-mounted (NSM) technique. The new approach is based on the SMCFT and considers the relevant features of the interaction between NSM FRP systems and surrounding concrete, such as debonding of FRP laminate/rod and fracture of surrounding concrete of FRP. The experimental results of 100 beams strengthened with different configurations and shear strengthening ratio of FRP reinforcements are used to appraise the predictive performance of the developed approach. By evaluating the ratio between the experimental results to the analytical predictions (V-exp/V-ana), an average value of 1.09 is obtained for the developed approach with a coefficient of variation of 11%.
引用
收藏
页码:137 / 148
页数:12
相关论文
共 22 条
[1]  
[Anonymous], 2008, ACI 4402R 08
[2]  
Baghi H., 2015, THESIS, P13
[3]  
Bellamkonda S. A., 2013, THESIS, P51
[4]  
Bentz EC, 2006, ACI STRUCT J, V103, P614
[5]   Design formula to evaluate the NSM FRP strips shear strength contribution to a RC beam [J].
Bianco, Vincenzo ;
Monti, Giorgio ;
Barros, J. A. O. .
COMPOSITES PART B-ENGINEERING, 2014, 56 :960-971
[6]   Theoretical Model and Computational Procedure to Evaluate the NSM FRP Strips Shear Strength Contribution to a RC Beam [J].
Bianco, Vincenzo ;
Monti, Giorgio ;
Barros, J. A. O. .
JOURNAL OF STRUCTURAL ENGINEERING, 2011, 137 (11) :1359-1372
[7]  
Blanksvard T., 2009, STRENGTHENING CONCRE, P141
[8]   Embedded Through-Section FRP Rod Method for Shear Strengthening of RC Beams: Performance and Comparison with Existing Techniques [J].
Chaallal, O. ;
Mofidi, A. ;
Benmokrane, B. ;
Neale, K. .
JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2011, 15 (03) :374-383
[9]  
Cisneros D, 2012, P 6 INT C FRP COMPOS
[10]  
Collins M.P., 2001, Evaluation of shear design procedures for concrete structures. A report prepared for the CSA Technical Committee on reinforced concrete design