Dissecting Functions of the Conserved Oligomeric Golgi Tethering Complex Using a Cell-Free Assay

被引:9
|
作者
Cottam, Nathanael P. [1 ]
Wilson, Katherine M. [1 ]
Ng, Bobby G. [2 ]
Koerner, Christian [3 ]
Freeze, Hudson H. [2 ]
Ungar, Daniel [1 ]
机构
[1] Univ York, Dept Biol, York YO10 5DD, N Yorkshire, England
[2] Sanford Burnham Med Res Inst, Sanford Childrens Hlth Res Ctr, Genet Dis Program, La Jolla, CA USA
[3] Med Univ Heidelberg, Dept Paediat, Heidelberg, Germany
基金
英国生物技术与生命科学研究理事会;
关键词
cell-free reconstitution; congenital disorders of glycosylation; conserved oligomeric Golgi complex; glycosylation enzyme sorting; Golgi apparatus; vesicle tethering; COG COMPLEX; MEMBRANE-FUSION; PROTEIN COMPLEX; TRANSPORT; DISTINCT; RECONSTITUTION; PURIFICATION; GLYCOSYLATION; ORGANIZATION; SNARES;
D O I
10.1111/tra.12128
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Vesicle transport sorts proteins between compartments and is thereby responsible for generating the non-uniform protein distribution along the eukaryotic secretory and endocytic pathways. The mechanistic details of specific vesicle targeting are not yet well characterized at the molecular level. We have developed a cell-free assay that reconstitutes vesicle targeting utilizing the recycling of resident enzymes within the Golgi apparatus. The assay has physiological properties, and could be used to show that the two lobes of the conserved oligomeric Golgi tethering complex play antagonistic roles in trans-Golgi vesicle targeting. Moreover, we can show that the assay is sensitive to several different congenital defects that disrupt Golgi function and therefore cause glycosylation disorders. Consequently, this assay will allow mechanistic insight into the targeting step of vesicle transport at the Golgi, and could also be useful for characterizing some novel cases of congenital glycosylation disorders.
引用
收藏
页码:12 / 21
页数:10
相关论文
共 50 条
  • [31] Vps1 functions with the GARP tethering complex for endosome-to-Golgi traffic.
    Saimani, U.
    Smothers, J.
    Kim, K.
    MOLECULAR BIOLOGY OF THE CELL, 2016, 27
  • [32] Cog1p plays a central role in the organization of the yeast conserved oligomeric golgi complex
    Fotso, P
    Koryakina, Y
    Pavliv, O
    Tsiomenko, AB
    Lupashin, VV
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (30) : 27613 - 27623
  • [33] A possible role for the conserved oligomeric Golgi complex subunit I (COGI) in autosomal recessive cerebrocostomandibular syndrome
    Zeevaert, R.
    Van, Darmne-Lombaerts R.
    Foulquier, F.
    Reynders, E.
    Annaert, W.
    Matthijs, G.
    Jaeken, J.
    JOURNAL OF INHERITED METABOLIC DISEASE, 2008, 31 : 48 - 48
  • [34] Deficiencies in subunits of the Conserved Oligomeric Golgi (COG) complex define a novel group of Congenital Disorders of Glycosylation
    Zeevaert, Renate
    Foulquier, Franiois
    Jaeken, Jaak
    Matthijs, Gert
    MOLECULAR GENETICS AND METABOLISM, 2008, 93 (01) : 15 - 21
  • [35] EMBRYO YELLOW gene, encoding a subunit of the conserved oligomeric Golgi complex, is required for appropriate cell expansion and meristem organization in Arabidopsis thaliana
    Ishikawa, Takaaki
    Machida, Chiyoko
    Yoshioka, Yasushi
    Ueda, Takashi
    Nakano, Akihiko
    Machida, Yasunori
    GENES TO CELLS, 2008, 13 (06) : 521 - 535
  • [36] Dissecting small cell lung cancer subtypes with cell-free DNA fragmentomes
    Rinaldi, Lorenzo
    Skidmore, Zachary L.
    Alipanahi, Bahar
    Graham, Garrett
    Chesnick, Bryan
    Takahashi, Nobuyuki
    Kumar, Rajesh
    Goyal, Shubhank
    Abel, Melissa Lauren
    Malin, Justin
    Desai, Parth Anil
    Dracopoli, Nicholas C.
    Velculescu, Victor E.
    Thomas, Anish
    Leal, Alessandro
    JOURNAL OF CLINICAL ONCOLOGY, 2023, 41 (16)
  • [37] Toward cell-free biofuel production: Stable immobilization of oligomeric enzymes
    Grimaldi, J.
    Collins, C. H.
    Belfort, G.
    BIOTECHNOLOGY PROGRESS, 2014, 30 (02) : 324 - 331
  • [38] The conserved oligomeric Golgi complex acts in organ morphogenesis via glycosylation of an ADAM protease in C-elegans
    Kubota, Y
    Sano, M
    Goda, S
    Suzuki, N
    Nishiwaki, K
    DEVELOPMENT, 2006, 133 (02): : 263 - 273
  • [39] Cog1p is a bridging subunit between the two lobes of Conserved Oligomeric Golgi (COG) complex
    Koriakina, YA
    Fotso, PK
    Lupashin, VV
    FASEB JOURNAL, 2005, 19 (04): : A823 - A823
  • [40] Mutations in COG2 encoding a subunit of the conserved oligomeric golgi complex cause a congenital disorder of glycosylation
    Kodera, H.
    Ando, N.
    Yuasa, I.
    Wada, Y.
    Tsurusaki, Y.
    Nakashima, M.
    Miyake, N.
    Saitoh, S.
    Matsumoto, N.
    Saitsu, H.
    CLINICAL GENETICS, 2015, 87 (05) : 455 - 460