An Eight Amino Acid Segment Controls Oligomerization and Preferred Conformation of the two Non-visual Arrestins

被引:17
作者
Chen, Qiuyan [1 ,2 ]
Zhuo, Ya [3 ]
Sharma, Pankaj [1 ,2 ]
Perez, Ivette [1 ]
Francis, Derek J. [3 ]
Chakravarthy, Srinivas [4 ]
Vishnivetskiy, Sergey A. [1 ]
Berndt, Sandra [1 ]
Hanson, Susan M. [1 ]
Zhan, Xuanzhi [1 ]
Brooks, Evan K. [5 ]
Altenbach, Christian [5 ]
Hubbell, Wayne L. [5 ]
Klug, Candice S. [3 ]
Iverson, T. M. [1 ,2 ,6 ,7 ]
Gurevich, Vsevolod V. [1 ]
机构
[1] Vanderbilt Univ, Dept Pharmacol, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Ctr Struct Biol, Nashville, TN 37232 USA
[3] Med Coll Wisconsin, Dept Biophys, Milwaukee, WI 53226 USA
[4] IIT, Biophys Collaborat Access Team BioCAT, Dept Biol Chem & Phys Sci, Chicago, IL 60616 USA
[5] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
[6] Vanderbilt Univ, Dept Biochem, Nashville, TN 37232 USA
[7] Vanderbilt Univ, Vanderbilt Inst Chem Biol, Nashville, TN 37232 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
oligomer; isoforms; IP6; signaling protein; structure;
D O I
10.1016/j.jmb.2020.166790
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
G protein coupled receptors signal through G proteins or arrestins. A long-standing mystery in the field is why vertebrates have two non-visual arrestins, arrestin-2 and arrestin-3. These isoforms are similar to 75% identical and 85% similar; each binds numerous receptors, and appear to have many redundant functions, as demonstrated by studies of knockout mice. We previously showed that arrestin-3 can be activated by inositol-hexakisphosphate (IP6). IP6 interacts with the receptor-binding surface of arrestin-3, induces arrestin-3 oligomerization, and this oligomer stabilizes the active conformation of arrestin-3. Here, we compared the impact of IP6 on oligomerization and conformational equilibrium of the highly homologous arrestin-2 and arrestin-3 and found that these two isoforms are regulated differently. In the presence of IP6, arrestin-2 forms "infinite" chains, where each promoter remains in the basal conformation. In contrast, full length and truncated arrestin-3 form trimers and higher-order oligomers in the presence of IP6; we showed previously that trimeric state induces arrestin-3 activation (Chen et al., 2017). Thus, in response to IP6, the two non-visual arrestins oligomerize in different ways in distinct conformations. We identified an insertion of eight residues that is conserved across arrestin-2 homologs, but absent in arrestin-3 that likely accounts for the differences in the IP6 effect. Because IP6 is ubiquitously present in cells, this suggests physiological consequences, including differences in arrestin-2/3 trafficking and JNK3 activation. The functional differences between two non-visual arrestins are in part determined by distinct modes of their oligomerization. The mode of oligomerization might regulate the function of other signaling proteins. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:15
相关论文
共 71 条
[51]   Identification of Arrestin-3-specific Residues Necessary for JNK3 Kinase Activation [J].
Seo, Jungwon ;
Tsakem, Elviche L. ;
Breitman, Maya ;
Gurevich, Vsevolod V. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286 (32) :27894-27901
[52]   Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide [J].
Shukla, Arun K. ;
Manglik, Aashish ;
Kruse, Andrew C. ;
Xiao, Kunhong ;
Reis, Rosana I. ;
Tseng, Wei-Chou ;
Staus, Dean P. ;
Hilger, Daniel ;
Uysal, Serdar ;
Huang, Li-Yin ;
Paduch, Marcin ;
Tripathi-Shukla, Prachi ;
Koide, Akiko ;
Koide, Shohei ;
Weis, William I. ;
Kossiakoff, Anthony A. ;
Kobilka, Brian K. ;
Lefkowitz, Robert J. .
NATURE, 2013, 497 (7447) :137-+
[53]   Visual and both non-visual arrestins in their "inactive" conformation bind JNK3 and Mdm2 and relocalize them from the nucleus to the cytoplasm [J].
Song, Xiufeng ;
Raman, Dayanidhi ;
Gurevich, Eugenia V. ;
Vishnivetskiy, Sergey A. ;
Gurevich, Vsevolod V. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (30) :21491-21499
[54]   How Does Arrestin Assemble MAPKs into a Signaling Complex? [J].
Song, Xiufeng ;
Coffa, Sergio ;
Fu, Haian ;
Gurevich, Vsevolod V. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (01) :685-695
[55]   Structure of the M2 muscarinic receptor-β-arrestin complex in a lipid nanodisc [J].
Staus, Dean P. ;
Hu, Hongli ;
Robertson, Michael J. ;
Kleinhenz, Alissa L. W. ;
Wingler, Laura M. ;
Capel, William D. ;
Latorraca, Naomi R. ;
Lefkowitz, Robert J. ;
Skiniotis, Georgios .
NATURE, 2020, 579 (7798) :297-+
[56]  
STERNEMARR R, 1993, J BIOL CHEM, V268, P15640
[57]   Homo- and hetero-oligomerization of β-arrestins in living cells [J].
Storez, H ;
Scott, MGH ;
Issafras, H ;
Burtey, A ;
Benmerah, A ;
Muntaner, O ;
Piolot, T ;
Coppey-Moisan, M ;
Bouvier, M ;
Labbé-Jullie, C ;
Marullo, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (48) :40210-40215
[58]   Crystal structure of cone arrestin at 2.3 Å:: Evolution of receptor specificity [J].
Sutton, RB ;
Vishnivetskiy, SA ;
Robert, J ;
Hanson, SM ;
Raman, D ;
Knox, BE ;
Kono, M ;
Navarro, J ;
Gurevich, VV .
JOURNAL OF MOLECULAR BIOLOGY, 2005, 354 (05) :1069-1080
[59]   Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing [J].
Svergun, DI .
BIOPHYSICAL JOURNAL, 1999, 76 (06) :2879-2886
[60]   DETERMINATION OF THE REGULARIZATION PARAMETER IN INDIRECT-TRANSFORM METHODS USING PERCEPTUAL CRITERIA [J].
SVERGUN, DI .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1992, 25 :495-503