The novel driver gene ASAP2 is a potential druggable target in pancreatic cancer

被引:24
作者
Fujii, Atsushi [1 ,2 ]
Masuda, Takaaki [1 ]
Iwata, Michio [3 ]
Tobo, Taro [4 ]
Wakiyama, Hiroaki [1 ]
Koike, Kensuke [1 ]
Kosai, Keisuke [1 ]
Nakano, Takafumi [1 ]
Kuramitsu, Shotaro [1 ]
Kitagawa, Akihiro [1 ]
Sato, Kuniaki [1 ]
Kouyama, Yuta [1 ]
Shimizu, Dai [1 ]
Matsumoto, Yoshihiro [1 ]
Utsunomiya, Tohru [5 ]
Ohtsuka, Takao [6 ]
Yamanishi, Yoshihiro [3 ]
Nakamura, Masafumi [2 ]
Mimori, Koshi [1 ]
机构
[1] Kyushu Univ, Dept Surg, Beppu Hosp, Beppu, Oita 8740838, Japan
[2] Kyushu Univ, Grad Sch Med Sci, Dept Surg & Oncol, Fukuoka, Japan
[3] Kyushu Inst Technol, Fac Comp Sci & Syst Engn, Dept Biosci & Bioinformat, Fukuoka, Japan
[4] Kyushu Univ, Dept Clin Lab Med, Beppu Hosp, Oita, Japan
[5] Oita Prefectural Hosp, Dept Surg, Oita, Japan
[6] Kagoshima Univ, Dept Digest Surg Breast & Thyroid Surg, Kagoshima, Japan
基金
日本学术振兴会;
关键词
ASAP2; driver gene; drug repositioning; niclosamide; pancreatic cancer;
D O I
10.1111/cas.14858
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Targeting mutated oncogenes is an effective approach for treating cancer. The 4 main driver genes of pancreatic ductal adenocarcinoma (PDAC) are KRAS, TP53, CDKN2A, and SMAD4, collectively called the "big 4" of PDAC, however they remain challenging therapeutic targets. In this study, ArfGAP with SH3 domain, ankyrin repeat and PH domain 2 (ASAP2), one of the ArfGAP family, was identified as a novel driver gene in PDAC. Clinical analysis with PDAC datasets showed that ASAP2 was overexpressed in PDAC cells based on increased DNA copy numbers, and high ASAP2 expression contributed to a poor prognosis in PDAC. The biological roles of ASAP2 were investigated using ASAP2-knockout PDAC cells generated with CRISPR-Cas9 technology or transfected PDAC cells. In vitro and in vivo analyses showed that ASAP2 promoted tumor growth by facilitating cell cycle progression through phosphorylation of epidermal growth factor receptor (EGFR). A repositioned drug targeting the ASAP2 pathway was identified using a bioinformatics approach. The gene perturbation correlation method showed that niclosamide, an antiparasitic drug, suppressed PDAC growth by inhibition of ASAP2 expression. These data show that ASAP2 is a novel druggable driver gene that activates the EGFR signaling pathway. Furthermore, niclosamide was identified as a repositioned therapeutic agent for PDAC possibly targeting ASAP2.
引用
收藏
页码:1655 / 1668
页数:14
相关论文
共 49 条
[1]  
Abrutyn E, 1989, Infect Dis Clin North Am, V3, P653
[2]   Anti-helminthic niclosamide inhibits Ras-driven oncogenic transformation via activation of GSK-3 [J].
Ahn, Sung Yong ;
Yang, Ji Hye ;
Kim, Nam Hee ;
Lee, Kyungro ;
Cha, Yong Hoon ;
Yun, Jun Seop ;
Kang, Hee Eun ;
Lee, Yoonmi ;
Choi, Jiwon ;
Kim, Hyun Sil ;
Yook, Jong In .
ONCOTARGET, 2017, 8 (19) :31856-31863
[3]  
Andreev J, 1999, MOL CELL BIOL, V19, P2338
[4]   Drug repositioning: Identifying and developing new uses for existing drugs [J].
Ashburn, TT ;
Thor, KB .
NATURE REVIEWS DRUG DISCOVERY, 2004, 3 (08) :673-683
[5]   PALB2 chromatin recruitment restores homologous recombination in BRCA1-deficient cells depleted of 53BP1 [J].
Belotserkovskaya, Rimma ;
Gil, Elisenda Raga ;
Lawrence, Nicola ;
Butler, Richard ;
Clifford, Gillian ;
Wilson, Marcus D. ;
Jackson, Stephen P. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[6]   Genomic basis for RNA alterations in cancer [J].
Calabrese, Claudia ;
Davidson, Natalie R. ;
Demircioglu, Deniz ;
Fonseca, Nuno A. ;
He, Yao ;
Kahles, Andre ;
Kjong-Van Lehmann ;
Liu, Fenglin ;
Shiraishi, Yuichi ;
Soulette, Cameron M. ;
Urban, Lara ;
Greger, Liliana ;
Li, Siliang ;
Liu, Dongbing ;
Perry, Marc D. ;
Xiang, Qian ;
Zhang, Fan ;
Zhang, Junjun ;
Bailey, Peter ;
Erkek, Serap ;
Hoadley, Katherine A. ;
Hou, Yong ;
Huska, Matthew R. ;
Kilpinen, Helena ;
Korbel, Jan O. ;
Marin, Maximillian G. ;
Markowski, Julia ;
Nandi, Tannistha ;
Pan-Hammarstrom, Qiang ;
Pedamallu, Chandra Sekhar ;
Siebert, Reiner ;
Stark, Stefan G. ;
Su, Hong ;
Tan, Patrick ;
Waszak, Sebastian M. ;
Yung, Christina ;
Zhu, Shida ;
Awadalla, Philip ;
Creighton, Chad J. ;
Meyerson, Matthew ;
Ouellette, B. F. Francis ;
Wu, Kui ;
Yang, Huanming ;
Brazma, Alvis ;
Brooks, Angela N. ;
Goke, Jonathan ;
Raetsch, Gunnar ;
Schwarz, Roland F. ;
Stegle, Oliver ;
Zhang, Zemin .
NATURE, 2020, 578 (7793) :129-+
[7]   CRISPR-Cas9D10A nickase-based genotypic and phenotypic screening to enhance genome editing [J].
Chiang, Ting-Wei Will ;
le Sage, Carlos ;
Larrieu, Delphine ;
Demir, Mukerrem ;
Jackson, Stephen P. .
SCIENTIFIC REPORTS, 2016, 6
[8]   Drug therapy: EGFR antagonists in cancer treatment [J].
Ciardiello, Fortunato ;
Tortora, Giampaolo .
NEW ENGLAND JOURNAL OF MEDICINE, 2008, 358 (11) :1160-1174
[9]   Cumulative Haploinsufficiency and Triplosensitivity Drive Aneuploidy Patterns and Shape the Cancer Genome [J].
Davoli, Teresa ;
Xu, Andrew Wei ;
Mengwasser, Kristen E. ;
Sack, Laura M. ;
Yoon, John C. ;
Park, Peter J. ;
Elledge, Stephen J. .
CELL, 2013, 155 (04) :948-962
[10]   Stage-specific sensitivity to p53 restoration during lung cancer progression [J].
Feldser, David M. ;
Kostova, Kamena K. ;
Winslow, Monte M. ;
Taylor, Sarah E. ;
Cashman, Chris ;
Whittaker, Charles A. ;
Sanchez-Rivera, Francisco J. ;
Resnick, Rebecca ;
Bronson, Roderick ;
Hemann, Michael T. ;
Jacks, Tyler .
NATURE, 2010, 468 (7323) :572-U249