Transformed generalized linear models

被引:11
作者
Cordeiro, Gauss M. [1 ]
de Andrade, Marinho G. [2 ]
机构
[1] Univ Fed Rural Pernambuco, Dept Estatist & Informat, BR-52171900 Recife, PE, Brazil
[2] Univ Sao Paulo, Dept Matemat Aplicada & Estatist, Inst Ciencias Matemat & Computacao, BR-13560970 Sao Carlos, SP, Brazil
关键词
Dispersion parameter; Exponential family; Family of transformations; Generalized linear model; Generalized ARMA model; Likelihood ratio; Profile likelihood; POWER-TRANSFORMATIONS; NORMALITY; SERIES;
D O I
10.1016/j.jspi.2009.02.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The estimation of data transformation is very useful to yield response variables satisfying closely a normal linear model, Generalized linear models enable the fitting of models to a wide range of data types. These models are based on exponential dispersion models. We propose a new class of transformed generalized linear models to extend the Box and Cox models and the generalized linear models. We use the generalized linear model framework to fit these models and discuss maximum likelihood estimation and inference. We give a simple formula to estimate the parameter that index the transformation of the response variable for a subclass of models. We also give a simple formula to estimate the rth moment of the original dependent variable. We explore the possibility of using these models to time series data to extend the generalized autoregressive moving average models discussed by Benjamin er al. [Generalized autoregressive moving average models. J. Amer. Statist. Assoc. 98, 214-223]. The usefulness of these models is illustrated in a Simulation study and in applications to three real data sets. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:2970 / 2987
页数:18
相关论文
共 22 条
[1]  
ARANDAORDAZ FJ, 1981, BIOMETRIKA, V68, P357, DOI 10.1093/biomet/68.2.357
[2]   Generalized autoregressive moving average models [J].
Benjamin, MA ;
Rigby, RA ;
Stasinopoulos, DM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2003, 98 (461) :214-223
[3]   AN ANALYSIS OF TRANSFORMATIONS REVISITED [J].
BICKEL, PJ ;
DOKSUM, KA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1981, 76 (374) :296-311
[4]   AN ANALYSIS OF TRANSFORMATIONS [J].
BOX, GEP ;
COX, DR .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1964, 26 (02) :211-252
[5]  
CORDEIRO GM, 1991, J ROY STAT SOC B MET, V53, P629
[6]  
COX DR, 1975, BIOMETRIKA, V62, P69
[7]  
DRAPER NR, 1969, J ROY STAT SOC B, V31, P472
[8]  
GUERRERO VM, 1982, BIOMETRIKA, V69, P309, DOI 10.2307/2335404
[9]   TIME-SERIES ANALYSIS SUPPORTED BY POWER-TRANSFORMATIONS [J].
GUERRERO, VM .
JOURNAL OF FORECASTING, 1993, 12 (01) :37-48
[10]  
*IBGE, 2002, IND DES SUST IDS