Finite Groups Whose f-Hypercenter Contains Certain Subgroups of Prime Power Order

被引:0
作者
Mohamed, M. Ezzat
机构
关键词
f-hypercentral subgroup; supersolvable group; Fitting subgroup;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the structure of finite groups G under the assumption that certain abelian subgroups of largest possible exponent of prime power order lie in the f-hypercenter of G. We improve and extend some results of Ezzat, Shaalan, Elashiry, Asaad, Ramadan, and Buckley.
引用
收藏
页码:587 / 592
页数:6
相关论文
共 10 条
[1]   Finite groups with quasinormal subgroups of prime power order [J].
Asaad, M ;
Mohamed, ME .
ACTA MATHEMATICA HUNGARICA, 2000, 89 (04) :321-326
[2]  
Asaad M., 1994, Pure Math. Appl. (PU.M.A.), V5, P251
[3]   FINITE GROUPS WHOSE MINIMAL SUBGROUPS ARE NORMAL [J].
BUCKLEY, J .
MATHEMATISCHE ZEITSCHRIFT, 1970, 116 (01) :15-&
[4]   THE INFLUENCE OF MINIMAL P-SUBGROUPS ON THE STRUCTURE OF FINITE-GROUPS [J].
DERR, JB ;
DESKINS, WE ;
MUKHERJEE, NP .
ARCHIV DER MATHEMATIK, 1985, 45 (01) :1-4
[5]  
Doerk K., 1992, De Gruyter Exp. Math., V4, pxiv + 891
[6]   DUALIZATION OF SATURATION FOR LOCALLY DEFINED FORMATIONS [J].
LAUE, R .
JOURNAL OF ALGEBRA, 1978, 52 (02) :347-353
[7]  
Mohamed ME, 2006, JP J ALGEBR NUMBER T, V6, P455
[8]  
Ramadan M., 1997, J EGYPT MATH SOC, V5, P1
[9]  
Weinstein M., 1982, Between Nilpotent and Solvable
[10]  
[No title captured]