Graphene Logic Gates

被引:16
作者
Moysidis, Savvas [1 ]
Karafyllidis, Ioannis G. [1 ]
Dimitrakis, Panagiotis [2 ]
机构
[1] Democritus Univ Thrace, Dept Elect & Comp Engn, GR-67100 Xanthi, Greece
[2] NCSR Demokritos, Inst Nanosci & Nanotechnol, Athens 60037, Greece
关键词
Nanoelectronic circuits; graphene; nanoribbon; nioelectronics; BIOCOMPATIBILITY; CELLS;
D O I
10.1109/TNANO.2018.2846793
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Graphene is a biocompatible material that can be incorporated safely into living tissue. This property makes graphene an ideal material for bioelectronics applications. The main obstacle for using graphene as a material for bioelectronic circuits is the lack of a bandgap, which results in noneffective current switching. Here, we use rectangular L-shaped graphene nanoribbons as a building block for graphene logic gates. Electrons are initially transported along the zigzag-edged nanoribbon and then the transport direction changes by 90 degrees, resulting in transport along the armchair edge. Our computations showed that electron scattering because of this change in the direction causes the appearance of a pseudobandgap, which is large enough for logic operations. This pseudobandgap appears as a zero-conductance region for electron energies near the Fermi level. We propose an AND, an OR, and a NOT logic gate and use tight-binding Hamiltonians and nonequilibrium Greens functions to show that these designs can reproduce effectively the desired logic operations.
引用
收藏
页码:852 / 859
页数:8
相关论文
共 15 条
[1]  
[Anonymous], 2015, BIOSENSORS BIOELECTR
[2]   Remarks on the tight-binding model of graphene [J].
Bena, Cristina ;
Montambaux, Gilles .
NEW JOURNAL OF PHYSICS, 2009, 11
[3]   Mapping brain activity with flexible graphene micro-transistors [J].
Blaschke, Benno M. ;
Tort-Colet, Nuria ;
Guimera-Brunet, Anton ;
Weinert, Julia ;
Rousseau, Lionel ;
Heimann, Axel ;
Drieschner, Simon ;
Kempski, Oliver ;
Villa, Rosa ;
Sanchez-Vives, Maria V. ;
Garrido, Jose A. .
2D MATERIALS, 2017, 4 (02)
[4]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[5]   Controllable p-n Junction Formation in Mono layer Graphene Using Electrostatic Substrate Engineering [J].
Chiu, Hsin-Ying ;
Perebeinos, Vasili ;
Lin, Yu-Ming ;
Avouris, Phaedon .
NANO LETTERS, 2010, 10 (11) :4634-4639
[6]   Nanoscale device modeling: the Green's function method [J].
Datta, S .
SUPERLATTICES AND MICROSTRUCTURES, 2000, 28 (04) :253-278
[7]   Graphene-Based Interfaces Do Not Alter Target Nerve Cells [J].
Fabbro, Alessandra ;
Scaini, Denis ;
Leon, Veronica ;
Vazquez, Ester ;
Cellot, Giada ;
Privitera, Giulia ;
Lombardi, Lucia ;
Torrisi, Felice ;
Tomarchio, Flavia ;
Bonaccorso, Francesco ;
Bosi, Susanna ;
Ferrari, Andrea C. ;
Ballerini, Laura ;
Prato, Maurizio .
ACS NANO, 2016, 10 (01) :615-623
[8]   Current Switching in Graphene Quantum Point Contacts [J].
Karafyllidis, Ioannis G. .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2014, 13 (04) :820-824
[9]   Interfacing silicon nanowires with mammalian cells [J].
Kim, Woong ;
Ng, Jennifer K. ;
Kunitake, Miki E. ;
Conklin, Bruce R. ;
Yang, Peidong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (23) :7228-+
[10]   High Density Individually Addressable Nanowire Arrays Record Intracellular Activity from Primary Rodent and Human Stem Cell Derived Neurons [J].
Liu, Ren ;
Chen, Renjie ;
Elthakeb, Ahmed T. ;
Lee, Sang Heon ;
Hinckley, Sandy ;
Khraiche, Massoud L. ;
Scott, John ;
Pre, Deborah ;
Hwang, Yoontae ;
Tanaka, Atsunori ;
Ro, Yun Goo ;
Matsushita, Albert K. ;
Dai, Xing ;
Soci, Cesare ;
Biesmans, Steven ;
James, Anthony ;
Nogan, John ;
Jungjohann, Katherine L. ;
Pete, Douglas V. ;
Webb, Denise B. ;
Zou, Yimin ;
Bang, Anne G. ;
Dayeh, Shadi A. .
NANO LETTERS, 2017, 17 (05) :2757-2764