Activation of apoptotic caspase cascade during the transition to pressure overload-induced heart failure

被引:35
|
作者
Moorjani, Narain [1 ]
Ahmad, Manzoor
Catarino, Pedro
Brittin, Robin
Trabzuni, Danyah
Al-Mohanna, Futwan
Narula, Navneet
Narula, Jagat
Westaby, Stephen
机构
[1] John Radcliffe Hosp, Mr Stephen Westabys Office, Oxford Heart Ctr, Dept Cardiothorac Surg, Oxford OX3 9DY, England
[2] King Faisal Specialist Hosp & Res Ctr, Dept Biol & Med Res, Riyadh 11211, Saudi Arabia
[3] Hosp Univ Penn, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA
[4] Univ Calif Irvine, Sch Med, Orange, CA 92668 USA
关键词
D O I
10.1016/j.jacc.2006.05.065
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
OBJECTIVES A pressure overload model was developed to simulate aortic stenosis and assess caspase activity during the transition to heart failure. BACKGROUND Cardiomyocyte apoptosis is implicated in the pathogenesis of heart failure, and caspase activation is central to this pathophysiological process. METHODS A total of 10 sheep were banded with variable aortic constriction devices, progressively inflated to increase left ventricular (LV) afterload. Serial LV endomyocardial biopsy samples were obtained to measure caspase activity and presence of apoptosis. RESULTS Over the first 3 to 4 weeks, hypertrophy developed in the sheep (LV mass index 90.8 +/- 4.9 g/m(2) vs. 44.0 +/- 3.0 g/m(2), p < 0.01), followed by gradual dilatation of the left ventricle (diastolic LV internal diameter 4.23 +/- 0.08 cm vs. 3.39 +/- 0.07 cm, p < 0.01). Ventricular function remained stable until 7 to 8 weeks after banding, when there was significant deterioration (fractional shortening 18.3 +/- 2.4% vs. 46.9 +/- 2.6%, p < 0.01), associated with clinical heart failure. Serial LV endomyocardial biopsy samples were obtained at each echocardiographically defined stage (LV hypertrophy, LV dilation, and LV failure). Activity of caspases-3, -8, and -9 (measured by specific fluorogenic peptide substrates and immunohistochemistry) increased progressively, particularly with the onset of myocardial dysfunction (caspase-3 7.92 +/- 1.19 vs. 1.00 +/- 0.15, caspase-8 1.94 +/- 0.21 vs. 1.00 +/- 0.04, caspase-9 5.87 +/- 0.97 vs. 1.00 +/- 0.18 relative fluorescent units, p < 0.05). No evidence of deoxyribonucleic acid (DNA) fragmentation, however, was identified by immunohistochemical assays. CONCLUSIONS Activation of cardiomyocyte caspase enzymes occurs during the transition to heart failure, without completion of apoptotic DNA fragmentation. Increased activity of caspase-8 and -9 suggests both mitochondrial and death-receptor mediated pathways are involved in this pathological process. Further knowledge of these pathways may stimulate development of apoptosis-based strategies for slowing progression of heart failure in aortic stenosis patients.
引用
收藏
页码:1451 / 1458
页数:8
相关论文
共 50 条
  • [1] Regulation of apoptotic genes and markers in pressure overload-induced heart failure
    Philipp, S
    Höhnel, K
    Hamet, P
    Dietz, R
    Willenbrock, R
    Lutz, J
    EUROPEAN HEART JOURNAL, 2001, 22 : 398 - 398
  • [2] Upregulation of Bcl-2 proteins during the transition to pressure overload-induced heart failure
    Moorjani, Narain
    Catarino, Pedro
    Trabzuni, Danyah
    Saleh, Soad
    Mooji, Azad
    Dzimiri, Nduna
    Al-Mohanna, Futwan
    Westaby, Stephen
    Ahmad, Manzoor
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2007, 116 (01) : 27 - 33
  • [3] Hypoxia Attenuates Pressure Overload-Induced Heart Failure
    Froese, Natali
    Szaroszyk, Malgorzata
    Galuppo, Paolo
    Visker, Joseph R.
    Werlein, Christopher
    Korf-Klingebiel, Mortimer
    Berliner, Dominik
    Reboll, Marc R.
    Hamouche, Rana
    Gegel, Simona
    Wang, Yong
    Hofmann, Winfried
    Tang, Ming
    Geffers, Robert
    Wende, Adam R.
    Kuehnel, Mark P.
    Jonigk, Danny D.
    Hansmann, Georg
    Wollert, Kai C.
    Abel, E. Dale
    Drakos, Stavros G.
    Bauersachs, Johann
    Riehle, Christian
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2024, 13 (03):
  • [4] Rescue of Pressure Overload-Induced Heart Failure by Estrogen Therapy
    Iorga, Andrea
    Li, Jingyuan
    Sharma, Salil
    Umar, Soban
    Bopassa, Jean C.
    Nadadur, Rangarajan D.
    Centala, Alexander
    Ren, Shuxun
    Saito, Tomoaki
    Toro, Ligia
    Wang, Yibin
    Stefani, Enrico
    Eghbali, Mansoureh
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2016, 5 (01): : 1 - 12
  • [5] Effects of Pitavastatin on Pressure Overload-Induced Heart Failure in Mice
    Kameda, Yoshihito
    Hasegawa, Hiroshi
    Kubota, Akihiko
    Tadokoro, Hiroyuki
    Kobayashi, Yoshio
    Komuro, Issei
    Takano, Hiroyuki
    CIRCULATION JOURNAL, 2012, 76 (05) : 1159 - 1168
  • [6] Rethinking Protein Acetylation in Pressure Overload-Induced Heart Failure
    Scott, Iain
    Sack, Michael N.
    CIRCULATION RESEARCH, 2020, 127 (08) : 1109 - 1111
  • [7] EFFECT OF PITAVASTATIN ON PRESSURE OVERLOAD-INDUCED HEART FAILURE IN MICE
    Kameda, Yoshihito
    Hasegawa, Hiroshi
    Kubota, Akihiko
    Tadokoro, Hiroyuki
    Kobayashi, Yoshio
    Takano, Hiroyuki
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2012, 59 (13) : E1062 - E1062
  • [8] MiR-139 expression is detrimental during pressure overload-induced heart failure
    Schroen, B.
    Peters, T.
    Verhesen, W.
    Derks, W.
    Zentlini, L.
    Zacchigna, S.
    Giacca, M.
    Van der Velden, J.
    De Windt, L.
    Heymans, S.
    CARDIOVASCULAR RESEARCH, 2014, 103
  • [9] Gentisic acid prevents the transition from pressure overload-induced cardiac hypertrophy to heart failure
    Sun, Simei
    Kee, Hae Jin
    Ryu, Yuhee
    Choi, Sinyoung
    Kim, Gwi Ran
    Kim, Hyung-Seok
    Kee, Seung-Jung
    Jeong, Myung Ho
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [10] Gentisic acid prevents the transition from pressure overload-induced cardiac hypertrophy to heart failure
    Simei Sun
    Hae Jin Kee
    Yuhee Ryu
    Sin Young Choi
    Gwi Ran Kim
    Hyung-Seok Kim
    Seung-Jung Kee
    Myung Ho Jeong
    Scientific Reports, 9