An optimal result for sampling density in shift-invariant spaces generated by Meyer scaling function

被引:11
作者
Selvan, A. Antony [1 ]
Radha, R. [1 ]
机构
[1] Indian Inst Technol, Dept Math, Madras 600036, Tamil Nadu, India
关键词
Bernstein's inequality; Frames Meyer scaling function; Nonuniform sampling; Riesz basis; Wirtinger's inequality; SPLINE SUBSPACES; RECONSTRUCTION; THEOREMS;
D O I
10.1016/j.jmaa.2017.01.086
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fora class of continuously differentiable function phi satisfying certain decay conditions, it is shown that if the maximum gap delta := sup(x(i+1) - xi) between the consecutive sample points is smaller than a certain number B-0, then any f is an element of V(phi) can be reconstructed uniquely and stably. As a consequence of this result, it is shown that if delta < 1, then {xi : i is an element of Z} is a stable set of sampling for V(phi) with respect to the weight {w(i) : i is an element of Z}, where w(i) = (x(i+1) - x(i-1))/2 and phi is the scaling function associated with Meyer wavelet. Further, the maximum gap condition S <1 is sharp. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:197 / 208
页数:12
相关论文
共 16 条
[1]   Exact iterative reconstruction algorithm for multivariate irregularly sampled functions in spline-like spaces:: The Lp-theory [J].
Aldroubi, A ;
Feichtinger, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (09) :2677-2686
[2]   Beurling-Landau-type theorems for non-uniform sampling in shift invariant spline spaces [J].
Aldroubi, A ;
Gröchenig, K .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2000, 6 (01) :93-103
[3]   Nonuniform sampling and reconstruction in shift-invariant spaces [J].
Aldroubi, A ;
Gröchenig, K .
SIAM REVIEW, 2001, 43 (04) :585-620
[4]  
[Anonymous], 2001, Foundations of Time-Frequency Analysis, DOI DOI 10.1007/978-1-4612-0003-1
[5]  
[Anonymous], 1972, Fourier Series and Integrals
[6]   BERNSTEIN-TYPE INEQUALITIES FOR SPLINES DEFINED ON THE REAL AXIS [J].
Babenko, V. F. ;
Zontov, V. A. .
UKRAINIAN MATHEMATICAL JOURNAL, 2011, 63 (05) :699-708
[7]  
Feichtinger H.G., 1993, STUDIES ADV MATH
[8]   RECONSTRUCTION ALGORITHMS IN IRREGULAR SAMPLING [J].
GROCHENIG, K .
MATHEMATICS OF COMPUTATION, 1992, 59 (199) :181-194
[9]   GABOR FRAMES AND TOTALLY POSITIVE FUNCTIONS [J].
Groechenig, Karlheinz ;
Stoeckler, Joachim .
DUKE MATHEMATICAL JOURNAL, 2013, 162 (06) :1003-1031
[10]   Irregular sampling for spline wavelet subspaces [J].
Liu, YM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (02) :623-627