Real zeros of holomorphic Hecke cusp forms and sieving short intervals

被引:4
作者
Matomaki, Kaisa [1 ]
机构
[1] Univ Turku, Dept Math & Stat, Turku 20014, Finland
基金
芬兰科学院;
关键词
Cusp forms; real zeros; sieving short intervals;
D O I
10.4171/JEMS/585
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study so-called real zeros of holomorphic Hecke cusp forms, that is, zeros on three geodesic segments on which the cusp form (or a multiple of it) takes real values. Ghosh and Sarnak, who were the first to study this problem, showed the existence of many such zeros if many short intervals contain numbers whose prime factors all belong to a certain subset of the primes. We prove new results concerning this sieving problem which leads to improved lower bounds for the number of real zeros.
引用
收藏
页码:123 / 146
页数:24
相关论文
共 20 条
[1]  
[Anonymous], 1981, I HAUTES ETUDES SCI
[2]   Smooth numbers in short intervals [J].
Croot, Ernie .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2007, 3 (01) :159-169
[3]  
FRIEDLANDER J., 2010, AM MATH SOC C PUBL, V57
[4]   Real zeros of holomorphic Hecke cusp forms [J].
Ghosh, Amit ;
Sarnak, Peter .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2012, 14 (02) :465-487
[5]   WHEN THE SIEVE WORKS [J].
Granville, Andrew ;
Koukoulopoulos, Dimitris ;
Matomaki, Kaisa .
DUKE MATHEMATICAL JOURNAL, 2015, 164 (10) :1935-1969
[6]  
Harman G., 2007, London Mathematical Society Monographs Series, V33
[7]   SOME PROBLEMS OF ANALYTIC NUMBER THEORY ON ARITHMETIC SEMIGROUPS [J].
Harman, Glyn ;
Matomaeki, Kaisa .
FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2008, 38 (01) :21-39
[8]  
Holowinsky R, 2010, ANN MATH, V172, P1517
[9]   L(INFINITY) NORMS OF EIGENFUNCTIONS OF ARITHMETIC SURFACES [J].
IWANIEC, H ;
SARNAK, P .
ANNALS OF MATHEMATICS, 1995, 141 (02) :301-320
[10]  
Jia CH, 1996, ACTA ARITH, V76, P21