THRESHOLD DYNAMICS IN A TIME-DELAYED PERIODIC SIS EPIDEMIC MODEL

被引:38
作者
Lou, Yijun [1 ]
Zhao, Xiao-Qiang [1 ]
机构
[1] Mem Univ Newfoundland, Dept Math, St John, NF A1C 5S7, Canada
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2009年 / 12卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
Periodic epidemic model; Maturation delay; Basic reproduction ratio; Periodic solutions; Uniform persistence; MONOTONE;
D O I
10.3934/dcdsb.2009.12.169
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The global dynamics of a periodic SIS epidemic model with maturation delay is investigated. We first obtain sufficient conditions for the single population growth equation to admit a globally attractive positive periodic solution. Then we introduce the basic reproduction ratio R-0 for the epidemic model, and show that the disease dies out when R-0 < 1, and the disease remains endemic when R-0 > 1. Numerical simulations are also provided to confirm our analytic results.
引用
收藏
页码:169 / 186
页数:18
相关论文
共 20 条
[1]   Seasonality and the dynamics of infectious diseases [J].
Altizer, S ;
Dobson, A ;
Hosseini, P ;
Hudson, P ;
Pascual, M ;
Rohani, P .
ECOLOGY LETTERS, 2006, 9 (04) :467-484
[2]  
ANDERSON R M, 1991
[3]  
[Anonymous], 2000, Mathematical epidemiology of infectious diseases: model building, analysis, and interpretation
[4]  
[Anonymous], AM MATH SOC MATH SUR
[5]   Interaction of maturation delay and nonlinear birth in population and epidemic models [J].
Cooke, K ;
van den Driessche, P ;
Zou, X .
JOURNAL OF MATHEMATICAL BIOLOGY, 1999, 39 (04) :332-352
[6]  
Dietz K., 1976, Proceedings of a Workshop on Mathematical Models in Medicine, P1
[7]   A simple model for complex dynamical transitions in epidemics [J].
Earn, DJD ;
Rohani, P ;
Bolker, BM ;
Grenfell, BT .
SCIENCE, 2000, 287 (5453) :667-670
[8]   Seasonal infectious disease epidemiology [J].
Grassly, Nicholas C. ;
Fraser, Christophe .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2006, 273 (1600) :2541-2550
[9]  
Hale J.K., 1988, MATH SURVEYS MONOGR, V25
[10]  
Hale J.K., 1993, Introduction to Functional Differential Equations