Multidimensional analogues of Bohr's theorem on power series

被引:129
作者
Aizenberg, L [1 ]
机构
[1] Bar Ilan Univ, Dept Math & Comp Sci, IL-52900 Ramat Gan, Israel
关键词
D O I
10.1090/S0002-9939-99-05084-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Generalizing the classical result of Bohr, we show that if an n-variable power series converges in n-circular bounded complete domain D and its sum has modulus less than 1, then the sum of the maximum of the modulii of the terms is less than 1 in the homothetic domain r . D, where r = 1 - [GRAPHICS] This constant is near to the best one for the domain D = {z : \z(1)\ + ... + \z(n)\ < 1}.
引用
收藏
页码:1147 / 1155
页数:9
相关论文
共 7 条
[1]  
Aizenberg L. A., 1983, Integral Representations and Residues in Multidimensional Complex Analysis
[2]  
AIZENBERG LA, 1960, SOV MATH DOKL, V2, P79
[3]   Bohr's power series theorem in several variables [J].
Boas, HP ;
Khavinson, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (10) :2975-2979
[4]  
Bohr H, 1914, P LOND MATH SOC, V13, P1
[5]  
RUDIN W, 1980, FUNCTION THEORY UNIT
[6]  
*WOLFR RES, 1996, MATH 3 0
[7]  
[No title captured]