Olfactory Senses Modulate Food Consumption and Physiology in Drosophila melanogaster

被引:2
作者
He, Jianzheng [1 ,2 ,3 ]
Tuo, Wenjuan [1 ,2 ]
Zhang, Xueyan [4 ]
Dai, Yuting [4 ]
Fang, Ming [1 ,2 ]
Zhou, Ting [1 ]
Xiu, Minghui [1 ,3 ,4 ]
Liu, Yongqi [1 ,3 ]
机构
[1] Gansu Univ Chinese Med, Prov Level Key Lab Mol Med Major Dis & Prevent &, Lanzhou, Peoples R China
[2] Gansu Univ Chinese Med, Coll Basic Med, Lanzhou, Peoples R China
[3] Gansu Univ Tradit Chinese Med, Key Lab Transfer Dunhuang Med Prov & Ministerial, Lanzhou, Peoples R China
[4] Gansu Univ Chinese Med, Coll Publ Hlth, Lanzhou, Peoples R China
来源
FRONTIERS IN BEHAVIORAL NEUROSCIENCE | 2022年 / 16卷
基金
中国国家自然科学基金;
关键词
olfaction; food consumption; physiology; stress resistance; Drosophila melanogaster; LIFE-SPAN; INSULIN; STRESS; HUNGER; METABOLISM; PERCEPTION; ODOR; BODY;
D O I
10.3389/fnbeh.2022.788633
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Both sensory and metabolic processes guide food intake. Olfactory inputs help coordinate food appreciation and selection, but their role in food consumption and post-feeding physiology remains poorly understood. In this study, using Drosophila melanogaster as a model system, we investigated the effects of olfactory sensory neurons (OSNs) on food consumption, metabolism, and stress responses. We found that dysfunction of OSNs affects diverse processes, including decreased food consumption, increased triacylglycerol level, enhanced stress resistance to starvation or desiccation, and decreased cold resistance. Decreased neuropeptide F receptor (NPFR) level or increased insulin activity in OSNs inhibited food consumption, while impaired NPF signaling or insulin signaling in OSNs increased resistance to starvation and desiccation. These studies provide insights into the function of the olfactory system in control of feeding behaviors and physiology.
引用
收藏
页数:11
相关论文
共 50 条
[41]   Natural variation at the Drosophila melanogaster Or22 odorant receptor locus is associated with changes in olfactory behaviour [J].
Shaw, Katherine H. ;
Dent, Craig, I ;
Johnson, Travis K. ;
Anderson, Alisha ;
de Bruyne, Marien ;
Warr, Coral G. .
OPEN BIOLOGY, 2021, 11 (09)
[42]   MULTIPLE GENETIC-CONTROL OF ACETATE-INDUCED OLFACTORY RESPONSES IN DROSOPHILA-MELANOGASTER LARVAE [J].
COBB, M ;
DANNET, F .
HEREDITY, 1994, 73 :444-455
[43]   Experience-dependent plasticity in the olfactory system of Drosophila melanogaster and other insects [J].
Fabian, Benjamin ;
Sachse, Silke .
FRONTIERS IN CELLULAR NEUROSCIENCE, 2023, 17
[44]   The role of mitochondria in shaping odor responses in Drosophila melanogaster olfactory sensory neurons [J].
Lucke, Jan ;
Kaltofen, Sabine ;
Hansson, Bill S. ;
Wicher, Dieter .
CELL CALCIUM, 2020, 87
[45]   Pinocchio, a novel protein expressed in the antenna, contributes to olfactory behavior in Drosophila melanogaster [J].
Rollmann, SM ;
Mackay, TFC ;
Anholt, RRH .
JOURNAL OF NEUROBIOLOGY, 2005, 63 (02) :146-158
[46]   Role of Go/i subgroup of G proteins in olfactory signaling of Drosophila melanogaster [J].
Raja, Jennifer S. Ignatious ;
Katanayeva, Natalya ;
Katanaev, Vladimir L. ;
Galizia, C. Giovanni .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2014, 39 (08) :1245-1255
[47]   The molecular receptive range of an olfactory receptor in vivo (Drosophila melanogaster Or22a) [J].
Pelz, Daniela ;
Roeske, Tina ;
Syed, Zainulabeuddin ;
de Bruyne, Marien ;
Galizia, C. Giovanni .
JOURNAL OF NEUROBIOLOGY, 2006, 66 (14) :1544-1563
[48]   The banana code-natural blend processing in the olfactory circuitry of Drosophila melanogaster [J].
Schubert, Marco ;
Hansson, Bill S. ;
Sachse, Silke .
FRONTIERS IN PHYSIOLOGY, 2014, 5
[49]   Semi-Automated Assessment of Long-Term Olfactory Habituation in Drosophila melanogaster Using the Olfactory Arena [J].
Roselli, Camilla ;
Ramaswami, Mani ;
Aranha, Marcia M. .
BIO-PROTOCOL, 2024, 14 (21)
[50]   Sleep contributes to preference for novel food odours in Drosophila melanogaster [J].
Tanizawa, Fuminori ;
Takemoto, Hiroyuki .
SCIENTIFIC REPORTS, 2021, 11 (01)