Controlling chaos in discontinuous dynamical systems

被引:30
作者
Danca, MF [1 ]
机构
[1] Tehnofrig Coll, Dept Math, Cluj Napoca 3400, Romania
关键词
D O I
10.1016/j.chaos.2004.02.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the possibility to implement the technique of changes in the system variables to control the chaos introduced by Guemez and Matias for continuous dynamical systems to a class of discontinuous dynamical systems. The approach is realized via differential inclusions following the Filippov theory. Three practical examples are considered. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:605 / 612
页数:8
相关论文
共 22 条
[1]  
[Anonymous], 1987, INTRO THEORY NONLINE
[2]  
Aubin J.-P., 1984, DIFFERENTIAL INCLUSI, V264
[3]   Asymptotic analysis of a new piecewise-linear chaotic system [J].
Aziz-Alaoui, MA ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (01) :147-157
[4]   LORENZ ATTRACTOR FROM DIFFERENTIAL EQUATIONS WITH PIECEWISE-LINEAR TERMS [J].
Baghious, E. H. ;
Jarry, P. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (01) :201-210
[5]   GENERALIZATIONS OF THE CHUA EQUATIONS [J].
BROWN, R .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1993, 40 (11) :878-884
[6]  
Danca M.-F., 2001, MATH NOTES+, V2, P103, DOI DOI 10.18514/MMN.2001.41
[7]   Synchronization of switch dynamical systems [J].
Danca, MF .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (08) :1813-1826
[8]   On a possible approximation of discontinuous dynamical systems [J].
Danca, MF ;
Codreanu, S .
CHAOS SOLITONS & FRACTALS, 2002, 13 (04) :681-691
[9]  
DANCA MF, IN PRESS IJBC
[10]   DIFFERENCE-METHODS FOR DIFFERENTIAL-INCLUSIONS - A SURVEY [J].
DONTCHEV, A ;
LEMPIO, F .
SIAM REVIEW, 1992, 34 (02) :263-294