A mathematical problem of the theory of gelation

被引:4
作者
Batisheva, JG [1 ]
Vedenyapin, VV [1 ]
Kuchanov, SI [1 ]
机构
[1] Russian Acad Sci, MV Keldysh Appl Math Inst, Moscow 125047, Russia
关键词
D O I
10.1063/1.1476954
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Current theory of gelation describes this process in terms of a set of nonlinear integral equations. In this article the uniqueness of nontrivial solutions of these equations within the unit functional hypercube has been proved. Besides, the convergence to this solution of iterations from an arbitrary point of the above hypercube has been established, which is of utmost importance for calculations of particular gelation processes. (C) 2002 American Institute of Physics.
引用
收藏
页码:3695 / 3703
页数:9
相关论文
共 17 条
[1]   CONVERGENCE TO EQUILIBRIUM IN A SYSTEM OF REACTING POLYMERS [J].
AIZENMAN, M ;
BAK, TA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 65 (03) :203-230
[2]  
Flory P J., PRINCIPLES POLYM CHE
[3]   NON-RANDOM POLYCONDENSATION - STATISTICAL THEORY OF SUBSTITUTION EFFECT [J].
GORDON, M ;
SCANTLEBURY, GR .
TRANSACTIONS OF THE FARADAY SOCIETY, 1964, 60 (4953) :604-+
[4]  
Kolmogorov A. N., 1970, Introductory real analysis
[5]  
KREIN M, 1948, RUSS MATH SURV, V3, P193
[6]  
KUCHANOV SI, 1976, DOKL AKAD NAUK SSSR+, V229, P135
[7]  
KUCHANOV SI, UNPUB J CHEM PHYS
[8]  
KUCHANOV SI, UNPUB J STAT PHYS
[9]  
KUCHANOV SI, 1996, MATH METHODS CONT CH
[10]  
LACHER RC, 1988, MATH CHEM COMP 1987