Measurement bias and effect restoration in causal inference

被引:137
作者
Kuroki, Manabu [1 ]
Pearl, Judea [2 ]
机构
[1] Inst Stat Math, Dept Data Sci, Tachikawa, Tokyo 1908562, Japan
[2] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Causal diagram; Confounder; Instrumental variable method; Proxy variable; Regression coefficient; Total effect; INSTRUMENTAL VARIABLES; MODELS; MISCLASSIFICATION; ERRORS; BOUNDS;
D O I
10.1093/biomet/ast066
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper highlights several areas where graphical techniques can be harnessed to address the problem of measurement errors in causal inference. In particular, it discusses the control of unmeasured confounders in parametric and nonparametric models and the computational problem of obtaining bias-free effect estimates in such models. We derive new conditions under which causal effects can be restored by observing proxy variables of unmeasured confounders with/without external studies.
引用
收藏
页码:423 / 437
页数:15
相关论文
共 29 条
[1]   A different paradigm for the initial colonisation of Sahul [J].
Allen, Jim ;
O'Connell, James F. .
ARCHAEOLOGY IN OCEANIA, 2020, 55 (01) :1-14
[2]  
[Anonymous], 2008, Modern Epidemiology
[3]  
[Anonymous], P 25 C ART INT AAAI
[4]  
Bartholomew D, 2011, WILEY SER PROBAB ST, P1, DOI 10.1002/9781119970583
[5]  
Bowden R., 1984, Instrumental variables
[6]  
Brito C., 2002, P 18 C UNC ART INT, P85
[7]  
Cai Z., 2008, Uncertainty in Artificial Intelligence, Proceed- ings of the Twenty-Fourth Conference, P62
[8]   Bounds on direct effects in the presence of confounded intermediate variables [J].
Cai, Zhihong ;
Kuroki, Manabu ;
Pearl, Judea ;
Tian, Jin .
BIOMETRICS, 2008, 64 (03) :695-701
[9]  
Carroll R. J., 2006, MEASUREMENT ERROR NO
[10]   GLOBAL IDENTIFIABILITY OF LINEAR STRUCTURAL EQUATION MODELS [J].
Drton, Mathias ;
Foygel, Rina ;
Sullivant, Seth .
ANNALS OF STATISTICS, 2011, 39 (02) :865-886