Acoustic monitoring has recently shown great potential in the diagnosis of infrastructure conditions. However, due to the severe noise interference in acoustic signals, meaningful features tend to be difficult to infer. It creates a considerable obstacle to an extensive application of acoustic monitoring. To tackle this problem, we propose an acceleration-guided acoustic signal denoising framework (AG-ASDF) based on learnable wavelet transform to automatically denoise the acoustic signal and extract the relevant features based on the acceleration signal. This denoising framework requires the acceleration signal only for the training stage. Therefore, only acoustic sensors (nonintrusive) need to be installed during the application phase, which is convenient and crucial for the condition monitoring of safety-critical infrastructure. A comparative study is conducted among the proposed AG-ASDF and other feature learning/extraction methods, by using a multiclass support vector machine (SVM) to evaluate the detection effectiveness of slab track conditions based on acoustic signals. Different healthy and unhealthy states of slab tracks are imitated with three types of slab track supporting conditions in a railway test line. The classification based on the proposed AG-ASDF features outperforms other feature extraction and learning methods with a significant accuracy improvement.
机构:
Univ Teknol PETRONAS, Elect & Elect Engn Dept, Seri Iskandar 32610, Perak, Malaysia
Univ Kebangsaan Malaysia, Elect Elect & Syst Dept, Fac Engn & Built Environm, Bangi 43600, Selangor, MalaysiaUniv Teknol PETRONAS, Elect & Elect Engn Dept, Seri Iskandar 32610, Perak, Malaysia
May, Zazilah
Alam, Md Khorshed
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknol PETRONAS, Elect & Elect Engn Dept, Seri Iskandar 32610, Perak, MalaysiaUniv Teknol PETRONAS, Elect & Elect Engn Dept, Seri Iskandar 32610, Perak, Malaysia
Alam, Md Khorshed
Rahman, Noor A'in A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknol PETRONAS, Elect & Elect Engn Dept, Seri Iskandar 32610, Perak, MalaysiaUniv Teknol PETRONAS, Elect & Elect Engn Dept, Seri Iskandar 32610, Perak, Malaysia
Rahman, Noor A'in A.
Mahmud, Muhammad Shazwan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknol PETRONAS, Mech Engn Dept, Seri Iskandar 32610, Perak Darul Rid, MalaysiaUniv Teknol PETRONAS, Elect & Elect Engn Dept, Seri Iskandar 32610, Perak, Malaysia
Mahmud, Muhammad Shazwan
Nayan, Nazrul Anuar
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kebangsaan Malaysia, Elect Elect & Syst Dept, Fac Engn & Built Environm, Bangi 43600, Selangor, MalaysiaUniv Teknol PETRONAS, Elect & Elect Engn Dept, Seri Iskandar 32610, Perak, Malaysia