A rapid hydrothermal synthesis of rutile SnO2 nanowires

被引:128
作者
Lupan, O. [1 ,2 ]
Chow, L. [1 ]
Chai, G. [3 ]
Schulte, A. [1 ]
Park, S. [1 ]
Heinrich, H. [1 ,4 ,5 ]
机构
[1] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA
[2] Tech Univ Moldova, Dept Microelect & Semicond Devices, MD-2004 Kishinev, Moldova
[3] Apollo Technol Inc, Lake Mary, FL 32746 USA
[4] Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Orlando, FL 32816 USA
[5] Univ Cent Florida, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA
来源
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS | 2009年 / 157卷 / 1-3期
关键词
Tin oxide; Nanowires; Nanoneedles; Hydrothermal synthesis; LATTICE DYNAMICS; RAMAN-SPECTRUM; NANOROD ARRAYS; SOLUTION ROUTE; GROWTH; FABRICATION; NANOSTRUCTURES; NANOCRYSTALS; EVAPORATION; NANOBELTS;
D O I
10.1016/j.mseb.2008.12.035
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Tin oxide (SnO2) nanowires with rutile structure have been synthesized by a facile hydrothermal method at 98 degrees C. The morphologies and structural properties of the as-grown nanowires/nanoneedles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction, X-ray diffraction and Raman spectroscopy. The SEM images reveal tetragonal nanowires of about 10-100 mu m in length and 50-100 nm in radius. The Raman scattering peaks indicate a typical rutile phase of the SnO2. The effects of molar ratio of SnCl4 to NH4OH on the growth mechanism are discussed. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:101 / 104
页数:4
相关论文
共 32 条
[1]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[2]   Growth and characterization of single crystalline tin oxide (SnO2) nanowires [J].
Budak, S. ;
Miao, G. X. ;
Ozdemir, M. ;
Chetry, K. B. ;
Gupta, A. .
JOURNAL OF CRYSTAL GROWTH, 2006, 291 (02) :405-411
[3]   Structural and optical study of SnO2 nanobelts and nanowires [J].
Calestani, D ;
Zha, M ;
Zappettini, A ;
Lazzarini, L ;
Salviati, G ;
Zanotti, L ;
Sberveglieri, G .
MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2005, 25 (5-8) :625-630
[4]   Bulk-quantity synthesis and self-catalytic VLS growth of SnO2 nanowires by lower-temperature evaporation [J].
Chen, YQ ;
Cui, XF ;
Zhang, K ;
Pan, DY ;
Zhang, SY ;
Wang, B ;
Hou, JG .
CHEMICAL PHYSICS LETTERS, 2003, 369 (1-2) :16-20
[5]   Insights into microstructural evolution from nanocrystalline SnO2 thin films prepared by pulsed laser deposition -: art. no. 165314 [J].
Chen, ZW ;
Lai, JKL ;
Shek, CH .
PHYSICAL REVIEW B, 2004, 70 (16) :1-7
[6]   Solvothermal controlled growth of Zn-doped SnO2 branched nanorod clusters [J].
Cheng, Guoe ;
Wu, Kui ;
Zhao, Pingtang ;
Cheng, Yang ;
He, Xianliang ;
Huang, Kaixun .
JOURNAL OF CRYSTAL GROWTH, 2007, 309 (01) :53-59
[7]   Novel nanostructures of functional oxides synthesized by thermal evaporation [J].
Dai, ZR ;
Pan, ZW ;
Wang, ZL .
ADVANCED FUNCTIONAL MATERIALS, 2003, 13 (01) :9-24
[8]   The complete Raman spectrum of nanometric SnO2 particles [J].
Diéguez, A ;
Romano-Rodríguez, A ;
Vilà, A ;
Morante, JR .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (03) :1550-1557
[9]   A novel and low-temperature hydrothermal synthesis of SnO2 nanorods [J].
Guo, CX ;
Cao, MH ;
Hu, CW .
INORGANIC CHEMISTRY COMMUNICATIONS, 2004, 7 (07) :929-931
[10]   High response and stability in CO and humidity measures using a single SnO2 nanowire [J].
Hernandez-Ramirez, F. ;
Tarancon, A. ;
Casals, O. ;
Arbiol, J. ;
Romano-Rodriguez, A. ;
Morante, J. R. .
SENSORS AND ACTUATORS B-CHEMICAL, 2007, 121 (01) :3-17