GWAS-Assisted Genomic Prediction to Predict Resistance to Septoria Tritici Blotch in Nordic Winter Wheat at Seedling Stage

被引:46
作者
Odilbekov, Firuz [1 ]
Armoniene, Rita [1 ,2 ]
Koc, Alexander [1 ]
Svensson, Jan [3 ]
Chawade, Aakash [1 ]
机构
[1] Swedish Univ Agr Sci, Dept Plant Brewing, Alnarp, Sweden
[2] Lithuanian Res Ctr Agr & Forestry LAMMC, Inst Agr, Akademija, Lithuania
[3] Nord Genet Resource Ctr, Alnarp, Sweden
关键词
GWAS - genome-wide association study; genomic prediction (GP); genomic selection (GS); wheat; Septoria tritici blotch (STB); Quantitative trait loci (QTL); ZYMOSEPTORIA-TRITICI; MYCOSPHAERELLA-GRAMINICOLA; GENETIC-RESOURCES; RUST RESISTANCE; WIDE PREDICTION; QOI RESISTANCE; B3; DOMAIN; CULTIVARS; SELECTION; PROTEIN;
D O I
10.3389/fgene.2019.01224
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Septoria tritici blotch (STB) disease caused by Zymoseptoria tritici is one of the most damaging diseases of wheat causing significant yield losses worldwide. Identification and employment of resistant germplasm is the most cost-effective method to control STB. In this study, we characterized seedling stage resistance to STB in 175 winter wheat landraces and old cultivars of Nordic origin. The study revealed significant (p < 0.05) phenotypic differences in STB severity in the germplasm. Genome-wide association analysis (GWAS) using five different algorithms identified ten significant markers on five chromosomes. Six markers were localized within a region of 2 cM that contained seven candidate genes on chromosome 1B. Genomic prediction (GP) analysis resulted in a model with an accuracy of 0.47. To further improve the prediction efficiency, significant markers identified by GWAS were included as fixed effects in the GP model. Depending on the number of fixed effect markers, the prediction accuracy improved from 0.47 (without fixed effects) to 0.62 (all non-redundant GWAS markers as fixed effects), respectively. The resistant genotypes and single-nucleotide polymorphism (SNP) markers identified in the present study will serve as a valuable resource for future breeding for STB resistance in wheat. The results also highlight the benefits of integrating GWAS with GP to further improve the accuracy of GP.
引用
收藏
页数:10
相关论文
共 55 条
  • [1] Identification of isolate-specific and partial resistance to septoria tritici blotch in 238 European wheat cultivars and breeding lines
    Arraiano, L. S.
    Brown, J. K. M.
    [J]. PLANT PATHOLOGY, 2006, 55 (06) : 726 - 738
  • [2] Contributions of disease resistance and escape to the control of septoria tritici blotch of wheat
    Arraiano, L. S.
    Balaam, N.
    Fenwick, P. M.
    Chapman, C.
    Feuerhelm, D.
    Howell, P.
    Smith, S. J.
    Widdowson, J. P.
    Brown, J. K. M.
    [J]. PLANT PATHOLOGY, 2009, 58 (05) : 910 - 922
  • [3] Sources of resistance and susceptibility to Septoria tritici blotch of wheat
    Arraiano, Lia S.
    Brown, James K. M.
    [J]. MOLECULAR PLANT PATHOLOGY, 2017, 18 (02) : 276 - 292
  • [4] Enhancing genomic prediction with genome-wide association studies in multiparental maize populations
    Bian, Y.
    Holland, J. B.
    [J]. HEREDITY, 2017, 118 (06) : 585 - 593
  • [5] Genetics of resistance to Zymoseptoria tritici and applications to wheat breeding
    Brown, James K. M.
    Chartrain, Laetitia
    Lasserre-Zuber, Pauline
    Saintenac, Cyrille
    [J]. FUNGAL GENETICS AND BIOLOGY, 2015, 79 : 33 - 41
  • [6] SEPTORIA-TRITICI RESISTANCE AND ASSOCIATIONS WITH AGRONOMIC TRAITS IN A WHEAT CROSS
    CAMACHOCASAS, MA
    KRONSTAD, WE
    SCHAREN, AL
    [J]. CROP SCIENCE, 1995, 35 (04) : 971 - 976
  • [7] Presence of the Stb6 gene for resistance to septoria tritici blotch (Mycosphaerella graminicola) in cultivars used in wheat-breeding programmes worldwide
    Chartrain, L
    Brading, PA
    Brown, JKM
    [J]. PLANT PATHOLOGY, 2005, 54 (02) : 134 - 143
  • [8] A transnational and holistic breeding approach is needed for sustainable wheat production in the Baltic Sea region
    Chawade, Aakash
    Armoniene, Rita
    Berg, Gunilla
    Brazauskas, Gintaras
    Frostgard, Gunilla
    Geleta, Mulatu
    Gorash, Andrii
    Henriksson, Tina
    Himanen, Kristiina
    Ingver, Anne
    Johansson, Eva
    Jorgensen, Lise Nistrup
    Koppel, Mati
    Koppel, Reine
    Makela, Pirjo
    Ortiz, Rodomiro
    Podyma, Wieslaw
    Roitsch, Thomas
    Ronis, Antanas
    Svensson, Jan T.
    Vallenback, Pernilla
    Weih, Martin
    [J]. PHYSIOLOGIA PLANTARUM, 2018, 164 (04) : 442 - 451
  • [9] Evolution of QoI resistance of the wheat pathogen Zymoseptoria tritici in Northern France
    Cheval, Penelope
    Siah, Ali
    Bomble, Myriam
    Popper, Azul D.
    Reignault, Philippe
    Halama, Patrice
    [J]. CROP PROTECTION, 2017, 92 : 131 - 133
  • [10] Genomic Prediction of Gene Bank Wheat Landraces
    Crossa, Jose
    Jarquin, Diego
    Franco, Jorge
    Perez-Rodriguez, Paulino
    Burgueno, Juan
    Saint-Pierre, Carolina
    Vikram, Prashant
    Sansaloni, Carolina
    Petroli, Cesar
    Akdemir, Deniz
    Sneller, Clay
    Reynolds, Matthew
    Tattaris, Maria
    Payne, Thomas
    Guzman, Carlos
    Pena, Roberto J.
    Wenzl, Peter
    Singh, Sukhwinder
    [J]. G3-GENES GENOMES GENETICS, 2016, 6 (07): : 1819 - 1834