Thermal Expansion Coefficient and Lattice Anharmonicity of Cubic Boron Arsenide

被引:27
|
作者
Chen, Xi [1 ]
Li, Chunhua [2 ]
Tian, Fei [3 ,4 ]
Gamage, Geethal Amila [3 ,4 ]
Sullivan, Sean [1 ]
Zhou, Jianshi [1 ,5 ]
Broido, David [2 ]
Ren, Zhifeng [3 ,4 ]
Shi, Li [1 ,5 ]
机构
[1] Univ Texas Austin, Texas Mat Inst, Mat Sci & Engn Program, Austin, TX 78712 USA
[2] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA
[3] Univ Houston, Dept Phys, Houston, TX 77204 USA
[4] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA
[5] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
关键词
CONDUCTIVITY; PRESSURE; BAS; CRYSTALS; GAP;
D O I
10.1103/PhysRevApplied.11.064070
中图分类号
O59 [应用物理学];
学科分类号
摘要
Recent measurements of an unusual high-thermal conductivity of around 1000 W m(-1) K-1 at room temperature in cubic boron arsenide (BAs) confirm predictions from theory and suggest potential applications of this semiconductor compound for thermal management applications. Knowledge of the thermal expansion coefficient and Gruneisen parameter of a material contributes both to the fundamental understanding of its lattice anharmonicity and to assessing its utility as a thermal-management material. However, previous theoretical calculations of the thermal expansion coefficient and Griineisen parameter of BAs have yielded inconsistent results. Here, we report the linear thermal expansion coefficient of BAs obtained from the x-ray diffraction measurements from 300 K to 773 K. The measurement results are in good agreement with our ab initio calculations that account for atomic interactions up to the fifth nearest neighbors. With the measured thermal expansion coefficient and specific heat, a Gruneisen parameter of BAs of 0.84 +/- 0.09 is obtained at 300 K, in excellent agreement with the value of 0.82 calculated from first principles and much lower than prior theoretical results. Our results confirm that BAs exhibits a better thermal expansion coefficient match with commonly used semiconductors than other high-thermal conductivity materials such as diamond and cubic boron nitride.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Effects of Impurities on the Thermal and Electrical Transport Properties of Cubic Boron Arsenide
    Chen, Xi
    Li, Chunhua
    Xu, Youming
    Dolocan, Andrei
    Seward, Gareth
    Van Roekeghem, Ambroise
    Tian, Fei
    Xing, Jie
    Guo, Shucheng
    Ni, Ni
    Ren, Zhifeng
    Zhou, Jianshi
    Mingo, Natalio
    Broido, David
    Shi, Li
    CHEMISTRY OF MATERIALS, 2021, 33 (17) : 6974 - 6982
  • [2] Elastic constants of cubic boron phosphide and boron arsenide
    Mahat, Sushant
    Li, Sheng
    Wu, Hanlin
    Koirala, Pawan
    Lv, Bing
    Cahill, David G.
    PHYSICAL REVIEW MATERIALS, 2021, 5 (03)
  • [3] Optical properties of cubic boron arsenide
    Song, Bai
    Chen, Ke
    Bushick, Kyle
    Mengle, Kelsey A.
    Tian, Fei
    Gamage, Geethal Amila Gamage Udalamatta
    Ren, Zhifeng
    Kioupakis, Emmanouil
    Chen, Gang
    APPLIED PHYSICS LETTERS, 2020, 116 (14)
  • [4] Differential anharmonicity and thermal expansion coefficient in 3C-SiC nanowires
    Hossain, Zubaer M.
    Elahi, Fazle
    Zhang, Zhaocheng
    PHYSICAL REVIEW B, 2019, 99 (11)
  • [5] Thermal and thermoelectric transport measurements of an individual boron arsenide microstructure
    Kim, Jaehyun
    Evans, Daniel A.
    Sellan, Daniel P.
    Williams, Owen M.
    Ou, Eric
    Cowley, Alan H.
    Shi, Li
    APPLIED PHYSICS LETTERS, 2016, 108 (20)
  • [6] Basic physical properties of cubic boron arsenide
    Kang, Joon Sang
    Li, Man
    Wu, Huan
    Nguyen, Huuduy
    Hu, Yongjie
    APPLIED PHYSICS LETTERS, 2019, 115 (12)
  • [7] Effect of isotope content on the cubic boron nitride lattice thermal conductivity
    Novikov, NV
    Podoba, AP
    Perevertailo, VM
    Shmegera, SV
    Witek, A
    DIAMOND AND RELATED MATERIALS, 2000, 9 (3-6) : 629 - 631
  • [8] Experimental observation of high thermal conductivity in boron arsenide
    Kang, Joon Sang
    Li, Man
    Wu, Huan
    Nguyen, Huuduy
    Hu, Yongjie
    SCIENCE, 2018, 361 (6402) : 575 - 578
  • [9] Ab initio calculations of the thermal properties of boron arsenide
    Yaddanapudi, Krishna
    COMPUTATIONAL MATERIALS SCIENCE, 2020, 184 (184)
  • [10] Isotope effect on the thermal expansion coefficient of atomically thin boron nitride
    Cai, Qiran
    Janzen, Eli
    Edgar, James H.
    Gan, Wei
    Zhang, Shunying
    Santos, Elton J. G.
    Li, Lu Hua
    2D MATERIALS, 2021, 8 (03)