Generic initial ideals and graded betti numbers

被引:0
作者
Herzog, J [1 ]
机构
[1] Univ GHS Essen, D-45117 Essen, Germany
来源
COMPUTATIONAL COMMUTATIVE ALGEBRA AND COMBINATORICS | 2002年 / 33卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:75 / 120
页数:46
相关论文
共 33 条
[1]  
ANDERSON I, 1987, COMBINATORICS FINTIE
[2]   Resolutions of monomial ideals and cohomology over exterior algebras [J].
Aramova, A ;
Avramov, LL ;
Herzog, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (02) :579-594
[3]   Gotzmann theorems for exterior algebras and combinatorics [J].
Aramova, A ;
Herzog, J ;
Hibi, T .
JOURNAL OF ALGEBRA, 1997, 191 (01) :174-211
[4]   Almost regular sequences and Betti numbers [J].
Aramova, A ;
Herzog, J .
AMERICAN JOURNAL OF MATHEMATICS, 2000, 122 (04) :689-719
[5]   Koszul cycles and Eliahou-Kervaire type resolutions [J].
Aramova, A ;
Herzog, J .
JOURNAL OF ALGEBRA, 1996, 181 (02) :347-370
[6]   p-Borel principal ideals [J].
Aramova, A ;
Herzog, J .
ILLINOIS JOURNAL OF MATHEMATICS, 1997, 41 (01) :103-121
[7]   Squarefree lexsegment ideals [J].
Aramova, A ;
Herzog, J ;
Hibi, T .
MATHEMATISCHE ZEITSCHRIFT, 1998, 228 (02) :353-378
[8]   Shifting operations and graded Betti numbers [J].
Aramova, A ;
Herzog, J ;
Hibi, T .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2000, 12 (03) :207-222
[9]   Ideals with stable Betti numbers [J].
Aramova, A ;
Herzog, J ;
Hibi, T .
ADVANCES IN MATHEMATICS, 2000, 152 (01) :72-77
[10]   A THEOREM ON REFINING DIVISION ORDERS BY THE REVERSE LEXICOGRAPHIC ORDER [J].
BAYER, D ;
STILLMAN, M .
DUKE MATHEMATICAL JOURNAL, 1987, 55 (02) :321-328