Density functional theory study on the reaction between hematite and methane during chemical looping process

被引:82
作者
Huang, Liang [1 ,3 ]
Tang, Mingchen [1 ]
Fan, Maohong [1 ,2 ]
Cheng, Hansong [3 ]
机构
[1] Univ Wyoming, Dept Chem & Petr Engn, Laramie, WY 82071 USA
[2] Univ Wyoming, Sch Energy Resources, Laramie, WY 82071 USA
[3] China Univ Geosci, Sustainable Energy Lab, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Chemical-looping reforming; Reactions between iron oxides and methane; Density functional theory; SYNTHESIS GAS GENERATION; OXYGEN CARRIERS; IRON-OXIDE; REACTION-KINETICS; REDUCTION; COMBUSTION; HYDROGEN; SURFACE; SYSTEM; FE;
D O I
10.1016/j.apenergy.2015.08.118
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We present a first principles study using periodic density functional theory on the reaction between alpha-Fe2O3 and CH4 during chemical looping process. The sequential processes of methane dissociation, hydrogen formation, water production and dissociation, and carbon selective oxidation on alpha-Fe2O3 (001) surface were explored. It was found that the sequential dissociations of CH4 were the dominant rate-determining process. Although H-2 production was less favorable than H2O production, the formed H2O can be dissociated facilely to increase the surface H concentration at chemical looping conditions. CO production is more favorable than CO2 production, while CO2 can also be produced in the high-temperature process. Subsequently, the oxygen migration in alpha-Fe2O3 (001) surface was also investigated, indicating the O migration from inner bulk to surface layer is inherently a high-temperature process. Our results are consistent with the kinetic experiments. In order to improve the CO selectivity in CH4 chemical looping process for syngas production, we need to find promoters which could decrease the activation barrier of CH4 sequential dissociation steps and increase the oxygen migration ability of oxygen-carriers. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:132 / 144
页数:13
相关论文
共 56 条
[1]   The use of iron oxide as oxygen carrier in a chemical-looping reactor [J].
Abad, A. ;
Mattisson, T. ;
Lyngfelt, A. ;
Johansson, M. .
FUEL, 2007, 86 (7-8) :1021-1035
[2]   Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion [J].
Abad, Alberto ;
Adanez, Juan ;
Garcia-Labiano, Francisco ;
de Diego, Luis F. ;
Gayan, Pilar ;
Celaya, Javier .
CHEMICAL ENGINEERING SCIENCE, 2007, 62 (1-2) :533-549
[3]   Selection of oxygen carriers for chemical-looping combustion [J].
Adánez, J ;
de Diego, LF ;
García-Labiano, F ;
Gayán, P ;
Abad, A ;
Palacios, JM .
ENERGY & FUELS, 2004, 18 (02) :371-377
[4]   On the geometric structure of the (0001)hematite surface [J].
Alvarez-Ramírez, F ;
Martínez-Magadán, JM ;
Gomes, JRB ;
Illas, F .
SURFACE SCIENCE, 2004, 558 (1-3) :4-14
[5]   Interaction between iron-based oxygen carrier and four coal ashes during chemical looping combustion [J].
Bao, Jinhua ;
Li, Zhenshan ;
Cai, Ningsheng .
APPLIED ENERGY, 2014, 115 :549-558
[6]   Chemical looping beyond combustion: production of synthesis gas via chemical looping partial oxidation of methane [J].
Bhavsar, Saurabh ;
Veser, Goetz .
RSC ADVANCES, 2014, 4 (88) :47254-47267
[7]   Chemical looping: To combustion and beyond [J].
Bhavsar, Saurabh ;
Najera, Michelle ;
Solunke, Rahul ;
Veser, Goetz .
CATALYSIS TODAY, 2014, 228 :96-105
[8]  
Bhoje R, 2013, J ENERGY, V2013, P1
[9]  
BLAKE RL, 1966, AM MINERAL, V51, P123
[10]   Carbon formation on nickel and iron oxide-containing oxygen carriers for chemical-looping combustion [J].
Cho, P ;
Mattisson, T ;
Lyngfelt, A .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2005, 44 (04) :668-676